T
CONCEPTS OF

Programming
Chapter 6 Languages

TENTH EDITION

Data Types

Chapter 6 Topics

To o o To To To To Do Do Do Do Do Do Do Do

Introduction

Primitive Data Types
Character String Types
User- Defined Ordinal Types
Array Types

Associative Arrays

Record Types

Tuple Types

List Types

Union Types

Pointer and Reference Types
Type Checking

Strong Typing

Type Equivalence

Theory and Data Types

Copyright © 2012 Addison-Wesley. All rights reserved.

1-2

Introduction

A A data type defines a collection of data
objects and a set of predefined operations
on those objects

A A descriptor is the collection of the
attributes of a variable

A An object represents an instance of a
user - defined (abstract data) type

A One design issue for all data types: What
operations are defined and how are they
specified?

Copyright © 2012 Addison-Wesley. All rights reserved.

1-3

Data Types

—

x A data type defines
E a collection of data objects, and

E a set of predefined operations on the objects
type: integer
operations: +;, *, /, %, "

x Evolution of Data Types
E Early days:
A all programming problems had to be modeled using only a few dat:

types
A FORTRAN | (1957) provides INTEGER, REAL, arrays

E Nowadays:
A Users can define abstract data types (representation + operations)

Data Types

i ————
X Primitive Types
X Strings
x Records
x Unions
X Arrays
X Associative Arrays
X Sets
x Pointers

Primitive Data Types

—

x Almost all programming languages provide a set of
primitive data types

x Primitive data types: Those not defined in terms of
other data types

X Some primitive data types are merely reflections of
the hardware

x Others require only a little nemardware support for
their implementation

Copyright © 2012 Addison- 1-6
Wesley. All rights reserved.

Primitive Data Types

—

X Those not defined in terms of other data types

E Numeric types
A Integer
A Floating point
A decimal

E Boolean types

E Character types

Primitive Data Types: Integer

x Almost always an exact reflection of the hardware
so the mapping is trivial

X There may be as many as eight different integer
types in a language

xJavaods si gn éye ,I shdrte,gmatr, s
long

Copyright © 2012 Addison- 1-8
Wesley. All rights reserved.

Representing Negative Integers

1+(1)="?

Ones complement, 8 bits 1111 1111
x +1 is 0000 0001 ')
x -11s 1111 1110

0000 0001

x |f we use natural method of Twos complement, 8 bits
summation we get sum 1111 x +11s 0000 0001
1111 x -11s 1111 1111
ST rI e e r P x |f we use the natural
222222& method we get sum 0000
AR ARARARARARANA 0000 (and carry 1 which we
N anan disregard)

Primitive Data Types: Floating Point

[————
x Model real numbers, but only as approximations

X Languages for scientific use support at least two
floating-point types (e.gfloat anddouble ;

sometimes more
x Usually exactly like the hardware, but not always
x |EEE FloatingPoint

Standard 754 S E—

C))

11 bits 52 bits

Exponent Fraction

ALSign bit

Copyright © 2012 Addison- 1-10
Wesley. All rights reserved.

(b)

Floating Point

[————
X Floating Point

E Approximate real numbers

A Note: even 0.1 cannot be represented exactly by a finite number
of of binary digits!

A Loss of accuracy when performing arithmetic operation

E Languages for scientific use support at least two floating
point types; sometimes more

1.63245 x 10

E Precision: accuracy of the fractional part
E Range: combination of range of fraction & exponent

E Most machines use IEEE Floating Point Standard 754
format

Floating Point Puzzle

—

True or False?

A x == (int)(float) x True
A x == (int)(double) x True
intx = 1; A == (float)(double) f True
float f = 0.1; A d == (float) d False
double d = 0.1; A f== -(-f); True
A d>f False
A-f> -d False
A f>d True
A -d> -f True
A d== False

A (d+) -d== True

Floating Point Representation

I ——
x Numerical Form
ET1SM 2E
ASign bits determines whether number is negative or positive

ASignificandM normally a fractional value in range [1.0,2.0).
AExponentE weights value by power of two

x Encoding

S I exp I frac

E MSB is sign bit
E exp field encodes
Efrac field encoded

Floating Point Representation

—
X Encoding

S I exp I frac

E MSB is sign bit
E exp field encodes
E frac field encodeM

X Sizes
E Single precision: &xp bits, 23frac bits
A32 bits total
E Double precision: 1&xp bits, 52frac bits
A64 bits total
E Extended precision: 1&xp bits, 63frac bits

AOnly found in Intelcompatible machines

AStored in 80 bits
U 1 bit wasted

Primitive Data Types: Complex

X Some languages support a complex type, e.g., C9¢
Fortran, and Python

x Each value consists of two floats, the real part and
the imaginary part

x Literal form (in Python):

7+3) , wherer Is the real part anglis the
Imaginary part

Copyright © 2012 Addison- 1-15
Wesley. All rights reserved.

Decimal Types

—

x For business applications ($$%%.g9., COBOL

x Store a fixed number of decimal digits, with the decin
point at a fixed position in the value

x Advantage
E can precisely store decimal values

x Disadvantages
E Range of values is restricted because no exponents are allc

E Representation in memory is wasteful
A Representation is called binary coded decimal (BCD)

3 decimal

0001 0010 0110 0011 BCD

Boolean Types

x Could be implemented as bits, but often as bytes
X Introduced in ALGOL 60

X Included in most generplurpose languages
designed since 1960
x Ansi C (1989)

E all operands with nonzero values are considered true, an
zero is considered false

x Advantage: readability

Character Types

x Characters are stored in computers as nunsedongs

x Traditionally use &it code ASCII, which uses 0 to 127
to code 128 different characters

x |1SO 88591 also use it character code, but allows
256 different characters

E Used by Ada

x 16-bit character set named Unicod$CS-2)
E Includes Cyrillic alphabet used in Serbia, and Thai digits
E First 128 characters are identical to ASCII
E used by Java and C#
x 32-bit Unicode (UC#4)
E Supported by Fortran, starting with 2003

Character String Types

X Values consist of sequences of characters

x Design issues:
E Is it a primitive type or just a special kind of character array?

~

E Is the length of objects static or dynamic?
x Qperations:

E Assignment

E Comparison (=, >, etc.)

E Catenation

E Substring reference

E Pattern matching
x Examples:

E Pascal
A Not primitive; assignment and comparison only

E Fortran 90

A Somewhat primitive; operations include assignment, comparison, catenatic
substring reference, and pattern matching

Character Strings

x Examples
E Ada
N := N1 & N2 (catenation)
N(2..4) (substring reference)

C and C++
A Not primitive; use char arrays and a library of functions that provide
operations
E SNOBOL4 (a string manipulation language)
A Primitive; many operations, including elaborate pattern matching
E Perl, JavaScript, Ruby, and PHP
A Patterns are defined in terms of regular expressions; a very powerful
facility
Java
A String class (not arrays of char); Objects are immutable
A StringBuffer is a class for changeable string objects

[T¢

[Tl¢

Character Strings

x String Length
E Statici FORTRAN 77, Ada, COBOL
A e.g. (FORTRAN 90) CHARACTER (LEN = 15) NAME;

E Limited Dynamic Length C and C++
A actual length is indicated by a null character

E Dynamici SNOBOL4, Perl, JavaScript
x Evaluation (of character string types)
£ Aid to writability
E As a primitive type with static length, they are inexpensive to provide
E Dynamic length is nice, but is it worth the expense?

x Implementation

Limited dynamic string

Static string Maximum length

Length Current length

Address Address

UserDefined Ordinal Types

x An ordinal type is one in which the range of possibl
values can be easily associated with the set of
positive integers

x Examples of primitive ordinal types in Java

E integer
E char
E boolean

Copyright © 2012 Addison- 1-22
Wesley. All rights reserved.

Ordinal Data Types

X Range of possible values can be easily associated w
the set of positive integers

X Enumeration types

E user enumerates all the possible values, which are symboli
constants
enum days {Mon, Tue, Wed, Thu, Fri, Sat, Sun};

E Design Issue:
A Should a symbolic constant be allowed to be in more than one type
definition?
A Type checking
U Are enumerated types coerced to integer?
U Are any other types coerced to an enumerated type?

Enumeration Types
[————
x All possible values, which are named constants, art
provided In the definitiofuser enumerates all the
possible values, which are symbolic constants

x C# example
enum days {mon, tue, wed, thu, fri, sat, sun};
x Design issues

E Is an enumeration constant allowed to appear in more th,
one type definition, and if so, how is the type of an
occurrence of that constant checked?

E Are enumeration values coerced to integer?
E Any other type coerced to an enumeration type?

Copyright © 2012 Addison- 1-24
Wesley. All rights reserved.

Enumeration Data Types

—

x Examples

E Pascal

A cannot reuse constants; can be used for array subscripts, for variables, cas
selectors; can be compared

E Ada
A constants can be reused (overloaded literals); disambiguate with context or
type named(one of them) (e. ¢
E Cand C++
A enumeration values are coerced into integers when they are put in integer
context
E Java

A Java 4.0 and previous versiais not include an enumeration type, but
provides the Enumeration interface

A Java 5.0 includes enumeration type
A can implement them as classes

class colors {
public final int red = O;
public final int blue = 1;

}

Java enum

—

A Java Enum is a special Java type used to define collections of
constants. More precisely, a Java enum type is a special kind of
Java class. An enum can contain constants, methods etc. Java
enums were added in Java 5.

public enum Level {
HIGH,
MEDIUM,
LOW

}

Level level = Level . HIGH;

Java enum

—

You can add fields to a Java enum. Thus, each constant enum value gets thes

fields. The field values must be supplied to the constructor of the enum when
defining the constants. Here is an example:

public enum Level {
HIGH (3), //calls constructor with value 3
MEDIUM(2), //calls constructor with value 2
LOW (1) //calls constructor with value 1
; I/ semicolon needed when fields / methods follow

private final int levelCode;

public Level(int levelCode) {
this.levelCode = levelCode;
}

}

Subrange Data Types

—

X An ordered contiguous subsequence of an ordinal type
E e.g., 12..14 is a subrange of integer type
E Design Issue: How can they be used?

E Examples:

A Pascal
U subrange types behave as their parent types;

U can be used as for variables and array indices
typepos= 0 .. MAXINT,

A Ada
U Subtypes are not new types, just constrained existing types (so they are compatible)
can be used as in Pascal, plus case constants
subtype POS_TYPE is INTEGER range 0 ..INTEGER'LAST;
type Days is (mon, tue ,wed, thu, fri ,sat, sun);
subtype Weekdays is Days range mon.. fri ;
subtype Index is Integer range 1..100;

Dayl: Days;

Day2: Weekday;
Day?2 := Day1,;

x Evaluation
A Aid to readability- restricted ranges add error detection

Implementation of Ordinal Types

X Enumeration types are implemented as integers

X Subrange types are the parent types with code
Inserted (by the compiler) to restrict assignments tc
subrange variables

Arrays

X An aggregate of homogeneous data elements in whic
an individual element is identified by its position in the
aggregate, relative to the first element

X Design Issues:
E What types are legal for subscripts?

E Are subscripting expressions in element references range
checked?

E When are subscript ranges bound?

E When does allocation take place?

E What is the maximum number of subscripts?
E Can array objects be initialized?

E Are any kind of slices allowed?

Arrays

X Indexing Is a mapping from indices to elements
E map(array_name, index_value_list) an element

X Index Syntax
E FORTRAN, PL/I, Ada use parentheses: A(3)
E most other languages use brackets: A[3]

X Subscript Types:
E FORTRAN, C- integer only
E Pascal any ordinal type (integer, boolean, char, enum)
E Ada- integer or enum (includes boolean and char)
E Java- integer types only

Arrays

X Number of subscripts (dimensions)
E FORTRAN I allowed up to three
FORTRAN 77 allows up to seven
Others- no limit

E
E
x Array Initialization
E Usually just a list of values that are put in the array in the order in which
the array elements are stored in memory

E Examples:

A FORTRAN- uses the DATA statement

Integer List(3)
Data List /0, 5, 5/

A C and C++ put the values in braces; can let the compiler count them
int stuff [] = {2, 4, 6, 8};
A Ada- positions for the values can be specified
SCORE : array (1..14,1..2) :=
(1 => (24, 10), 2 => (10, 7),
3 =>(12, 30), others => (0, 0));
A Pascal does not allow array initialization

Arrays

x Array Operations
E Ada
A Assignment; RHS can be an aggregate constant or an array name
A Catenation between singtBmensioned arrays
E FORTRAN 95
A Includes a number of array operations called elementals because they are

operations between pairs of array elements
U E.g., add (+) operator between two arrays results in an array of the sums of
element pairs of the two arrays
E Slices

A A slice is some substructure of an array

A FORTRAN 90
INTEGER MAT (1:4,1:4)
MAT(1 : 4, 1)- the first column
MAT(2, 1 : 4)- the second row

A Ada - singledimensioned arrays only
LIST(4..10)

Arrays

X Implementation of Arrays
E Access function maps subscript expressions to an address

the array
E Singledimensioned array Array
Element type
address(list[k]) Index type

= address(list[lower_bound])
+ (k-1)*element_size
= (address[lower_bound]element_size)

Index lower bound

Index upper bound

+ (k * element_size) Address
E Multi-dimensional arrays 3 47
A Row major order: 3,4,7,6,2,5,1,3,8 6 2 5§
A Column major order 3,6,1,4,2,3,7,5,8

1 3 8

Subscript Binding and Array Categories
[—————

x Static subscript ranges are statically bound
and storage allocation Is static (before-run
time)

E Advantage: efficiency (no dynamic allocation)

x Fixed stackdynamic subscript ranges are statically
bound, but the allocation is done at declaration time

E Advantage: space efficiency

Copyright © 2012 Addison- 1-35
Wesley. All rights reserved.

Subscript Binding and Array Categories

(cortmaet)

x Stackdynamic subscript ranges are dynamically
bound and the storage allocation is dynamic (done
run-time)

E Advantage: flexibility (the size of an array need not be
known until the array is to be used)

x Fixed heapdynamic similar to fixed stacidynamic:
storage binding is dynamic but fixed after allocation
(.e., binding Is done when requested and storage I
allocated from heap, not stack)

Copyright © 2012 Addison- 1-36
Wesley. All rights reserved.

Subscript Binding and Array Categories
— 018 181818181 5 8 8 E—

\VVI LI L] l\.avu/

x Heapdynamic: binding of subscript ranges and
storage allocation is dynamic and can change any
number of times

E Advantage: flexibility (arrays can grow or shrink during
program execution)

Copyright © 2012 Addison- 1-37
Wesley. All rights reserved.

Subscript Binding and Array Categories

NN
11

~n
\Lultidirirucu)

x C and C++ arrays that includetc modifier are
static

x C and C++ arrays withoutatic modifier are fixed
stackdynamic

x C and C++ provide fixed heapynamic arrays

X C# Iincludes a second array classyList that
provides fixed heaplynamic

x Perl, JavaScript, Python, and Ruby support heap
dynamic arrays

Copyright © 2012 Addison- 1-38
Wesley. All rights reserved.

Array Initialization

X Some language allow Initialization at the time of
storage allocation

E C, C++, Java, C# example
int list[] = {4, 5, 7, 83}

E Character strings in C and C++

char name [] = nfreddi enj;

E Arrays of strings in C and C++

char *names [] = {nBobn, njJ aken,
E Java initialization of String objects

String[] names = {nBobn, nNJakenj

Copyright © 2012 Addison- 1-39
Wesley. All rights reserved.

Heterogeneous Arrays

X A heterogeneous arrag one in which the elements
need not be of the same type

x Supported by Perl, Python, JavaScript, and Ruby

Copyright © 2012 Addison- 1-40
Wesley. All rights reserved.

Array Initialization

x C-based languages
Eint list[]={1,3,5, 7}

Echar *names [] = { nMi kenj, nNfFr ednj
X Ada
E List: array (1..5) of Integer :=
(1=>17,3 => 34, others =>0);
x Python
E List comprehensions
list = [x ** 2 for x inrange (12) if X% 3 ==
O]
puts|[O, 9, 36, 81] In list

Copyright © 2012 Addison- 1-41
Wesley. All rights reserved.

Arrays Operations

x APL provides the most powerful array processing operations
for vectors and matrixes as well as unary operators (for
example, to reverse column elements)

x Ada allows array assignment but also catenation

XxPythonos array assignment s,
changes. Python also supports array catenation and element
membership operations

Ruby also provides array catenation

Fortran provideglementabperations because they are
between pairs of array elements

E For example, + operator between two arrays results in an array of the
sums of the element pairs of the two arrays

Copyright © 2012 Addison- 1-42
Wesley. All rights reserved.

Rectangular and Jagged Arrays

X A rectangular array is a muddimensioned array In
which all of the rows have the same number of

elements and all columns have the same number o
elements

x A jagged matrix has rows with varying number of
elements

E Possible when muHiimensioned arrays actually appear
as arrays of arrays

x C, C++, and Java support jagged arrays

x Fortran, Ada, and C# support rectangular arrays (C
also supports jagged arrays)

Copyright © 2012 Addison- 1-43
Wesley. All rights reserved.

Slices

—

X A slice Is some substructure of an array; nothing
more than a referencing mechanism

x Slices are only useful in languages that have array
operations

Copyright © 2012 Addison- 1-44
Wesley. All rights reserved.

Slice Examples

X Python
vector = [2, 4, 6, 8, 10, 12, 14, 16]
mat = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

vector (3:6) IS a threeelement array
mat[0][0:2] IS the first and second element of the first row
of mat
X Ruby supports slices with tBee method
list.slice(2, 2) returns the third and fourth elements of
list

Copyright © 2012 Addison- 1-45
Wesley. All rights reserved.

Implementation of Arrays

x Access function maps subscript expressions to an
address In the array

x Access function for singtdimensioned arrays:
address(list[k]) = address (list[lower _bound])
+ ((k-lower_bound) * element_size)

Copyright © 2012 Addison- 1-46
Wesley. All rights reserved.

Accessing Multidimensioned Arrays
[—

X Two common ways:
E Row major order (by rows) used in most languages
E Column major order (by columns)used in Fortran
E A compiletime descriptor
for a multidimensional e
array Element type

Index type

Number of dimensions

Index range 0

Index range n — 1

Address

Copyright © 2012 Addison- 1-47
Wesley. All rights reserved.

Locating an Element in a Mudimensioned

rra\/
e

Ay

AGeneral format
Location (a][l,j]) = address of a [row_Ib,col_Ib] +
(((1- row_Ib)*n)+(- col_Ib)) * element_size

Copyright © 2012 Addison- 1-48
Wesley. All rights reserved.

Compile Time Descriptors

Multidimensioned array

Array
Element type
Element type Index type
Index type Number of dimensions

Index lower bound Index range 1

Index upper bound

Index range n

Address
Address
Single - dimensioned array Multidimensional array
Copyright © 2012 Addison- 1-49

Wesley. All rights reserved.

Assoclative Arrays

X An associative arrays an unordered collection of
data elements that are indexed by an equal numb
of values calledkeys
E Userdefined keys must be stored

x Design Issues:
- What is the form of references to elements?
- Is the size static or dynamic?
x Built-in type In Perl, Python, Ruby, ahda
E In Lua, they are supported by tables

Copyright © 2012 Addison- 1-50
Wesley. All rights reserved.

Assoclative Arrays

x Structure and Operations in Perl
E Names begin with %
E Literals are delimited by parentheses
E%hi temps = (" Monday" =>
E Subscripting is done using braces and keys
E e.g., $hi_temps{"Wednesday"} = 83;

x Elements can be removed with delete
E e.g., delete $hi_temps{"Tuesday"};

Record Types

—

X A recordis a possibly heterogeneous aggregate of
data elements in which the individual elements are
identified by names

x Design issues:
E What is the syntactic form of references to the field?
E Are elliptical references allowed

Copyright © 2012 Addison- 1-52
Wesley. All rights reserved.

Records

—

x Record Definition Syntax

E COBOL uses level numbers to show nested records:
others use recursive definitions
E COBOL

01 EMPLOYEERECORD.
02 EMPLOYEENAME.

05 FIRST PICTURE IS X(20).

05 MIDDLE PICTURE IS X(10).

05 LAST PICTURE IS X(20).
02 HOURLYRATE PICTURE IS 99V99.

Level numbers (01,02,05) indicate their relative values in the
hierarchical structure of the record

PICTURE clause show the formats of the field storage locations

X(20): 20 alphanumeric characters
99V99: four decimal digits with decimal point in the middle

Records

—

x Ada:

Type Employee Name_Type is record
First: String (1..20);
Middle: String (1..10);
Last: String (1..20);

end record,;

type Employee Record Type is record
Employee_Name: Employee_Name_Type;
Hourly Rate: Float;

end record,;

Employee Record: Employee Record Type;

Records

[————————————————
x References to Record Fields

x COBOL field references

field name OF record _name 1 OF
e.g. MIDDLE OF EMPLOYEENAME OF EMPLOYEE_RECORD

x Fully qualified references must include all intermediatt
record names

x Elliptical references allow leaving out record names a

long as the reference is unambiguous

- e.g., the following are equivalent:
FIRST, FIRST OF EMPLOYE®RIAME, FIRST OF EMPLOYEERECORD

Records

—

x Operations

E Assignment

A Pascal, Ada, and C allow it if the types are identical
U In Ada, the RHS can be an aggregate constant

E Initialization
A Allowed in Ada, using an aggregate constant
E Comparison
A In Ada, = and /=; one operand can be an aggregate constant

E MOVE CORRESPONDING

A In COBOL- it moves all fields in the source record to fields with
the same names in the destination record

Comparing Records to Arrays

x Records are used when collection of data values is
heterogeneous

X Access to array elements is much slower than
access to record fields, because subscripts are
dynamic (field names are static)

x Dynamic subscripts could be used with record
field access, but it would disallow type checking
and it would be much slower

Implementation of Record Type

Record

Name

Offset address relative to Field 1 < Type

the beginning of the records Offset
IS associated with each field -

Name

Fieldn < Type

Offset

Address

Copyright © 2012 Addison- 1-58
Wesley. All rights reserved.

Tuple Types
[—
x Atuple Is a data type that is similar to a record,
except that the elements are not named

x Used in Python, ML, and F# to allow functions to

return multiple values
E Python
A Closely related to its lists, but immutable
A Create with a tuple literal
my Tuple = (3, 5. 8, Njappl eNj
Referenced with subscripts (begirlat
Catenation with+ and deleted witldlel

Copyright © 2012 Addison- 1-59
Wesley. All rights reserved.

Tuple TypeScontinued)

—

x ML
val my Tuple = (3, 5.8, Nja p p |
- Access as follows:
#1(myTuple) IS the first element
- A new tuple type can be defined

type IntReal = Int * real ;
X F#
let tup=(3,5,7)
let a,b,c=tup This assigns a tuple to a

tuple patternia, b, c)

Copyright © 2012 Addison- 1-60
Wesley. All rights reserved.

List Types

—

x Lists in LISP and Scheme are delimited by
parentheses and use no commas

(ABCD) and(A (B C)D)
x Data and code have the same form
As data(Aa B C) Is literally what it is

As code(A B C) Is the functiom applied to the
parameters andcC

X The interpreter needs to know which a list is, so if it
IS data, we quote it with an apostrophe
Nj(A B IsClata

Copyright © 2012 Addison- 1-61
Wesley. All rights reserved.

List TypeS(continued)

—

x List Operations in Scheme
E CARreturns the first element of its list parameter
(CAR Nj(A rBturd3A)

E CDRreturns the remainder of its list parameter after the fir:
element has been removed

(CDR Nj(A Btums(B C)

- CONSuuts its first parameter into its second parameter, a
list, to make a new list

(CONS NjA (returayAB C)
- LIST returns a new list of its parameters
(L1 ST NjA NjB miUms(/AB (¢ D))

Copyright © 2012 Addison- 1-62
Wesley. All rights reserved.

List TypeS(continued)

—

x List Operations in ML

E Lists are written in brackets and the elements are separal
by commas

E List elements must be of the same type
E The Scheme&oNSunction is a binary operator in ML,
3:05,7, 9] evaluates t¢s, 5, 7, 9]

E The SchemeaArRandcDRfunctions are namedi andtl |,
respectively

Copyright © 2012 Addison- 1-63
Wesley. All rights reserved.

List TypeS(continued)

—

X F# Lists

E Like those of ML, except elements are separated by
semicolons andd andtl are methods of thast class

x Python Lists

EThe | ist data type al so se
EUnl i ke Scheme, Common LI SF
are mutable

E Elements can be of any type
E Create a list with an assignment
myList = [3, 5.8, "grape "]

Copyright © 2012 Addison- 1-64
Wesley. All rights reserved.

List TypeS(continued)

—

x Python Listgcontinued)

E List elements are referenced with subscripting, with
iIndices beginning at zero

X = myList[1] Setsx t0 5.8

E List elements can be deleted wik
del myList[1]

E List Comprehensionis derived from set notation
[X * X for x inrange (6) If X% 3==0]
range (7) creatego, 1, 2, 3, 4, 5, 6]

Constructed listf0, 9, 36]

Copyright © 2012 Addison- 1-65
Wesley. All rights reserved.

List TypeS(continued)

—

xHaskell 6s Li st Comprehe
E The original
[N*n|n< - [1..10]]

XxF#0s List Comprehensi on
let myArray = [| for 1 In 1..5 ->[i*i)|]

x Both C# and Java supports lists through their genel
heapdynamic collection classesst andarrayList
respectively

Copyright © 2012 Addison- 1-66
Wesley. All rights reserved.

UnionsTypes

—

X A union isatype whose variables are allowed to store
different type values at different times during execution

X Design Issues for unions:
E What kind of type checking, if any, must be done?
E Should unions be integrated with records?

x Examples:

E FORTRAN- with EQUIVALENCE
A No type checking

E Pascal

A both discriminated and nondiscriminated unions
type intreal =
record tagg : Boolean of
true : (blint : integer);
false : (blreal : real);
end,;

AProblem with Pascal s design: ¢ty

Unions

—

7

xExample (Pascal) e

FReasons why Pascal 6s uni on
effectively:
A User can create inconsistent unions
(because the tag can be individually assigned)
var blurb : intreal,
X : real,
blurb.tagg := true; {itis an integer}
blurb.blint :=47; {ok}
blurb.tagg := false; {itis areal}
X := blurb.blreal; {assigns an integer to a real }
A The tag is optional
A Now, only the declaration and the second and last assignments are
required to cause trouble

Unions

—

x Exampl es é
E Ada
A discriminated unions

A Reasons they are safer than Pascal:
U Tag must be present

U Itis impossible for the user to create an inconsistent union (because tag
cannot be assigned by itselfAll assignments to the union must include
the tag value, because they are aggregate values)

E Cand C++
A free unions (no tags)
A Not part of their records
U No type checking of references

E Java has neither records nor unions

Ada Union Types

type Shape is (Circle, Triangle, Rectangle);
type Colors is (Red, Green, Blue);
type Figure (Form: Shape) IS record
Filled: Boolean;
Color: Colors;
case Form is
when Circle => Diameter: Float;
when Triangle =>
Leftside, Rightside: Integer;
Angle: Float;
when Rectangle => Sidel, Side2: Integer;
end case ;
end record

Copyright © 2012 Addison- 1-70
Wesley. All rights reserved.

Ada Union Type lllustrated

Rectangle: Side 1, Side 2
K

'S N\
Circle:Diameter

A
r N

P,
Y
Triangle: Left Side, Right Side, Angle
Dlscriminant (Form)
Color
Filled

A discriminated union of three shape variables

Copyright © 2012 Addison- 1-71
Wesley. All rights reserved.

Implementation of Unions

type Node (Tag : Boolean) 5
record
case Tag is
when True => Count : Integer;
when False => Sum : Float;

end case
end record
Discriminated union
Tag BOOLEAN
Offset Count Name
Case table
® > Integer Type
True —
Address
False ® > o -
Float Type
Copyright © 2012 Addison- 1-72

Wesley. All rights reserved.

Evaluation of Unions
I ——

X Free unions are unsafe
E Do not allow type checking

x Java and C# do not support unions

E Reflective of growing concerns for safety in programming
language

xAdads descri minated uni

Copyright © 2012 Addison- 1-73
Wesley. All rights reserved.

Sets

—

X A type whose variables can store unordered collections of distir
values from some ordinal type

x Design Issue:
E What is the maximum number of elements in any set base type?

x Example

E Pascal

A No maximum size in the language definition
(not portable, poor writability if max is too small)

A Operations: in, union (+), intersection (*), differenee £, <>, superset (>=),
subset (<=)

E Ada

A does not include sets, but defines in as set membership operator for all
enumeration types

Java
A includes a class for set operations

[Tl¢

Sets

—

x Evaluation

E If a language does not have sets, they must be simulatec
either with enumerated types or with arrays

E Arrays are more flexible than sets, but have much slowel
set operations

X Implementation

E Usually stored as bit strings and use logical operations fc
the set operations

Pointers

—

X A pointer type is a type in which the range of values consist:
of memory addresses and a special value, nil (or null)
x Uses:
E Addressing flexibility
E Dynamic storage management
x Design Issues:
E What is the scope and lifetime of pointer variables?
E What is the lifetime of heagynamic variables?
E Are pointers restricted to pointing at a particular type?

E Are pointers used for dynamic storage management, indirect
addressing, or both?

E Should a language support pointer types, reference types, or both?
x Fundamental Pointer Operations:

E Assignment of an address to a pointer
E References (explicit versus implicit dereferencing)

Pointers

—

X Problems with pointers:

E Dangling pointers (dangerous)
A A pointer points to a heaglynamic variable that has been deallocated

A Creating one (with explicit deallocation):
U Allocate a heajlynamic variable and set a pointer to point at it
U Set a second pointer to the value of the first pointer
U Deallocate the heaglynamic variable, using the first pointer
E Lost HeapDynamic Variables (wasteful)

A A heapdynamic variable that is no longer referenced by any program
pointer

A Creating one:
U Pointer pl is set to point to a newly created hdyapamic variable
U plis later set to point to another newly created ftgagamic variable

x The process of losing healynamic variables is called
memory leakage

Pointers

—

x Examples:

E Pascal
A used for dynamic storage management only
A Explicit dereferencing (postfix ?)
A Dangling pointers are possible (dispose)
A Dangling objects are also possible
E Ada
A a little better than Pascal

A Some dangling pointers are disallowed because dynamic objects ca
be automatically deallocated at the end of pointer's type scope

A All pointers are initialized to null

A Similar dangling object problem (but rarely happens, because explic
deallocation is rarely done)

Pointers

[————
xExampl es é

E C and C++
A Used for dynamic storage management and addressing
A Explicit dereferencing and addresoperator
A Can do address arithmetic in restricted forms
A Domain type need not be fixed (void *)
float stuff{100];
float *p;
p = stuff;

*(p+5) is equivalent to stuff[5] and p[5]
*(p+i) is equivalent to stuff[i] and pli]
(Implicit scaling)

void * - Can point to any type and can be type checked (cannot be
dereferenced)

Pointers

—

xExampl es é

E FORTRAN 90 Pointers

A Can point to heap and ndreap variables
A Implicit dereferencing
A Pointers can only point to variables that have the TARGET attribute
A The TARGET attribute is assigned in the declaration, as in:
INTEGER, TARGET :: NODE
A A special assignment operator is used for-dereferenced references
REAL, POINTER :: ptr (POINTER is an attribute)

ptr => target (where target is either a pointer or a non
pointer with the TARGET attribute))
This sets ptr to have the same value as target

Pointers

—

xExampl es é

E C++ Reference Types
A Constant pointers that are implicitly dereferenced
A Used for parameters
A Advantages of both pasg-reference and pass/-value

E Java
A Only references
A No pointer arithmetic
A Can only point at objects (which are all on the heap)
A No explicit deallocator (garbage collection is used)
A Means there can be no dangling references
A Dereferencing is always implicit

Pointers

—

x Evaluation

E Dangling pointers and dangling objects are problems, as is
heap management

E Pointers are like gote'dhey widen the range of cells that
can be accessed by a variable

E Pointers or references are necessary for dynamic data
structures-so we can't design a language without them

Pointers

—

X A pointer is a variable holding an address value

Int x = 10:
Int *p; P
&X: 10 (X

Y

p:

p contains the address of x in memory.

Pointers

—

X A pointer is a variable holding an address value

Int x = 10:
Int *p; P
&X: 20 |X

Y

p:

*P = 20;

*p refers to the value stored In X.

Pointers

Declares a pointer

int X = 10; _—— to an integer

p=8&; — & isaddress operator

gets address of X
20;

* dereference operator
gets value at p

Pointers

—

x Pointers are designed for two kinds of uses
E Provide a method for indirect addressing
(see example on the previous slides)
E Provide a method of dynamic storage management
Int *ip = new int[100];

x Pointer dereferencing

E Implicit: dereferenced automatically

A In Fortran 90, pointers have no associated storage until it is allocated or
associated by pointer assignment

REAL, POINTER :: var
ALLOCATE (var)

var =var + 2.3
(no special symbol needed to dereference)

E Explicit: In C++, use dereference operator (*)

Problems with Pointers

—

x Dangling pointers (dangerous)
E points to deallocated memory
Int *p;
void trouble () {
Int X;
P = &X;
return;
}
main() {
trouble();

}
x Lost HeapDynamic Variables
Int *p = new Int[10]; [* p points to anonymous variable */
Inty;
P =&Yy; [* space for anonymous variable lost */

Solutions to Dangling Pointer Problerr

—

x Tombstones

E Every heapdynamic variablencludes a special cetialled a
tombstonethat is itselfa pointer to the heaghynamic variable

Actual pointer points only at tombstones and never to heap dynamic
variables

Whenheapdynamic variable is deallocategdmbstone remains but
set to nil

This prevents pointer from ever pointing to a deallocated variable

Any reference to any pointer that points to nil tombstone can be
detected as an error

Problem: costly in both time and space

A Every access to heatynamic variable through a tombstone requires one
more level of indirection, which consumes an additional machine cycle
on most computers

[Tl¢

[Tl¢

[Tl [TIc

[Tl¢

Solutions to Dangling Pointer Problerr

x Locks-andkeys approach

T

E

[T¢

[T¢

[T¢

[T¢

Pointer values are represented as ordered pairs (key,address)

Heapdynamic variables are represented as storage for variable plus
header cell that stores an integer lock value

When heagdynamic variable is allocated, a lock value is created and
placed both in the lock cell (of healynamic variable) and key cell

(of pointer)

Every access to the dereferenced pointer compares key value of
pointer to lock value of heaghynamic variable

When heagdynamic variable is deallocated, its lock value is cleared
to an illegal lock value

When dangling pointer is dereferenced, its address value is still intac
but its key value no longer match the lock

x Leave deallocation to the runtime system
E Garbage collection in Java

Type Checking

Generalize the concept of operands and operators to includ

subprograms and assignments
A Type checkings the activity of ensuring that the operands of an
operator are of compatible types
A A compatible typés one that is either legal for the operator, or is
allowed under language rules to be implicitly converted, by
compilergenerated code, to a legal type.
A This automatic conversion is called¢@ercion
A A type erroris the application of an operator to an operand of an
Inappropriate type
A Note:
If all type bindings are static, nearly all checking can be static
If type bindings are dynamic, type checking must be dynamic

90

COME 214.

COME 214.

Strong Typing

A programming language srongly typedf

A type errorsare always detected

A There is stricenforcement of type rulasith no
exceptions.

A All types areknown at compile timgi.e. are statically
bound.

A With variables that can store values of more than one
type, incorrect type usage can be detected atimmm

A Strong typing catches more errors at compile time than
weak typing, resulting in fewer reinme exceptions.

91

COME 214.

Which languages have strong typing?

AFortran 77 isndt because it d
variable equivalence statements.

AThe language&da, Java, and Haskealre strongly typed.

APascals (almost) strongly typed, but variant records screw it up.

AC and C++ are sometimes described as strongly typed, but are
perhaps better described as weakly typed because parameter typ
checking can be avoided and unions are not type checked

A Coercion rules strongly affect strong typinghey can weaken it
considerably (C++ versus Ada)

92

Type Compatiblility

Type compatibility by nanmaeans the two variables have compatible
types if they are in either the same declaration or in declarations the
use the same type name

A Easy to implement but highly restrictive:
ASubranges of integer types ar
A Formal parameters must be the same type as their correspondir
actual parameters (Pascal)

Type compatibility by structummeans that two variables have compatib

types if their types have identical structures
A More flexible, but harder to implement

COME 214. 93

COME 214.

ype Compatibility

Consider the problem of two structured types.

Suppose they are circularly defined

A Are two record types compatible if they are structurally the
same but use different field names?

A Are two array types compatible if they are the same except tt
the subscripts are different? (e.g. [1..10] aBd4])

A Are two enumeration types compatible if their components al
spelled differently?

With structural type compatibility, you cannot
differentiate between types of the same structure
(e.g. different units of speed, both float)

94

COME 214.

Type Compatibility Language examples

Pascal:usually structure, but in some cases name is used
(formal parameters)

C: structure, except for records

Ada: restricted form of name
I Derived types allow types with the same structure to be
different
I Anonymous types are all unigue, even in:
A, B : array (1..10) of INTEGER:

95

Summary

AThe data types of a language are a large part of
what determines that | anguec
usefulness

AThe primitive data types of most imperative
languages include numeric, character, and
Boolean types

AThe user-defined enumeration and subrange types
are convenient and add to the readability and
reliability of programs

AArrays and records are included in most
languages

APointers are used for addressing flexibility and to
control dynamic storage management

Copyright © 2018 Pearson. All rights reserved. 1-96
COME 214. 96

