
Chapter 6

Data Types

Copyright © 2012 Addison-Wesley. All rights reserved. 1-2

Chapter 6 Topics

Å Introduction

Å Primitive Data Types

Å Character String Types

Å User- Defined Ordinal Types

Å Array Types

Å Associative Arrays

Å Record Types

Å Tuple Types

Å List Types

Å Union Types

Å Pointer and Reference Types

Å Type Checking

Å Strong Typing

Å Type Equivalence

Å Theory and Data Types

Copyright © 2012 Addison-Wesley. All rights reserved. 1-3

Introduction

Å A data type defines a collection of data
objects and a set of predefined operations
on those objects

Å A descriptor is the collection of the
attributes of a variable

Å An object represents an instance of a
user - defined (abstract data) type

Å One design issue for all data types: What
operations are defined and how are they
specified?

Data Types

×A data type defines

Ĕa collection of data objects, and

Ĕa set of predefined operations on the objects

type: integer

operations: +, -, *, /, %, ^

×Evolution of Data Types

ĔEarly days:

Áall programming problems had to be modeled using only a few data

types

ÁFORTRAN I (1957) provides INTEGER, REAL, arrays

ĔNowadays:

ÁUsers can define abstract data types (representation + operations)

Data Types

×Primitive Types

×Strings

×Records

×Unions

×Arrays

×Associative Arrays

×Sets

×Pointers

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-6

Primitive Data Types

×Almost all programming languages provide a set of

primitive data types

×Primitive data types: Those not defined in terms of

other data types

×Some primitive data types are merely reflections of

the hardware

×Others require only a little non-hardware support for

their implementation

Primitive Data Types

×Those not defined in terms of other data types

ĔNumeric types

ÁInteger

ÁFloating point

Ádecimal

ĔBoolean types

ĔCharacter types

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-8

Primitive Data Types: Integer

×Almost always an exact reflection of the hardware

so the mapping is trivial

×There may be as many as eight different integer

types in a language

×Javaôs signed integer sizes: byte , short , int ,

long

Representing Negative Integers

Ones complement, 8 bits

×+1 is 0000 0001

× -1 is 1111 1110

× If we use natural method of

summation we get sum 1111

1111

Twos complement, 8 bits

×+1 is 0000 0001

× -1 is 1111 1111

× If we use the natural

method we get sum 0000

0000 (and carry 1 which we

disregard)

+

1 + (-1) = ?

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-10

Primitive Data Types: Floating Point

×Model real numbers, but only as approximations

×Languages for scientific use support at least two

floating-point types (e.g., float and double ;

sometimes more

×Usually exactly like the hardware, but not always

×IEEE Floating-Point

Standard 754

Floating Point

×Floating Point

ĔApproximate real numbers

ÁNote: even 0.1 cannot be represented exactly by a finite number
of of binary digits!

ÁLoss of accuracy when performing arithmetic operation

ĔLanguages for scientific use support at least two floating-
point types; sometimes more

1.63245 x 105

ĔPrecision: accuracy of the fractional part

ĔRange: combination of range of fraction & exponent

ĔMost machines use IEEE Floating Point Standard 754
format

True

True

True

False

True

False

False

True

True

False

True

int x = 1;

float f = 0.1;

double d = 0.1;

Å x == (int)(float) x

Å x == (int)(double) x

Å f == (float)(double) f

Å d == (float) d

Å f == - (- f);

Å d > f

Å - f > - d

Å f > d

Å - d > - f

Å d == f

Å (d+f) - d == f

True or False?

Floating Point Puzzle

×Numerical Form

Ĕï1s M 2E

ÁSign bit sdetermines whether number is negative or positive

ÁSignificand M normally a fractional value in range [1.0,2.0).

ÁExponent E weights value by power of two

×Encoding

ĔMSB is sign bit

Ĕexp field encodes E

Ĕfrac field encodes M

s exp frac

Floating Point Representation

×Encoding

ĔMSB is sign bit

Ĕexp field encodes E

Ĕfrac field encodes M

×Sizes
ĔSingle precision: 8 exp bits, 23 frac bits

Á32 bits total

ĔDouble precision: 11 exp bits, 52 frac bits

Á64 bits total

ĔExtended precision: 15 exp bits, 63 frac bits

ÁOnly found in Intel-compatible machines

ÁStored in 80 bits

ü1 bit wasted

s exp frac

Floating Point Representation

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-15

Primitive Data Types: Complex

×Some languages support a complex type, e.g., C99,

Fortran, and Python

×Each value consists of two floats, the real part and

the imaginary part

×Literal form (in Python):

(7 + 3j) , where 7 is the real part and 3 is the

imaginary part

Decimal Types

×For business applications ($$$) ïe.g., COBOL

× Store a fixed number of decimal digits, with the decimal

point at a fixed position in the value

×Advantage

Ĕcan precisely store decimal values

×Disadvantages

ĔRange of values is restricted because no exponents are allowed

ĔRepresentation in memory is wasteful

ÁRepresentation is called binary coded decimal (BCD)

1263

0001 0010 0110 0011 BCD

decimal

Boolean Types

×Could be implemented as bits, but often as bytes

×Introduced in ALGOL 60

×Included in most general-purpose languages

designed since 1960

×Ansi C (1989)

Ĕall operands with nonzero values are considered true, and

zero is considered false

×Advantage: readability

Character Types

×Characters are stored in computers as numeric codings

×Traditionally use 8-bit code ASCII, which uses 0 to 127
to code 128 different characters

×ISO 8859-1 also use 8-bit character code, but allows
256 different characters

ĔUsed by Ada

×16-bit character set named Unicode(UCS-2)

ĔIncludes Cyrillic alphabet used in Serbia, and Thai digits

ĔFirst 128 characters are identical to ASCII

Ĕused by Java and C#

×32-bit Unicode (UCS-4)

ĔSupported by Fortran, starting with 2003

Character String Types

×Values consist of sequences of characters

×Design issues:

Ĕ Is it a primitive type or just a special kind of character array?

Ĕ Is the length of objects static or dynamic?

×Operations:

Ĕ Assignment

Ĕ Comparison (=, >, etc.)

Ĕ Catenation

Ĕ Substring reference

Ĕ Pattern matching

×Examples:

Ĕ Pascal

ÁNot primitive; assignment and comparison only

Ĕ Fortran 90

ÁSomewhat primitive; operations include assignment, comparison, catenation,
substring reference, and pattern matching

Character Strings

×Examples

Ĕ Ada

N := N1 & N2 (catenation)

N(2..4) (substring reference)

Ĕ C and C++

ÁNot primitive; use char arrays and a library of functions that provide

operations

Ĕ SNOBOL4 (a string manipulation language)

ÁPrimitive; many operations, including elaborate pattern matching

Ĕ Perl, JavaScript, Ruby, and PHP

ÁPatterns are defined in terms of regular expressions; a very powerful

facility

Ĕ Java

ÁString class (not arrays of char); Objects are immutable

ÁStringBuffer is a class for changeable string objects

Character Strings

×String Length

Ĕ Static ïFORTRAN 77, Ada, COBOL

Áe.g. (FORTRAN 90) CHARACTER (LEN = 15) NAME;

Ĕ Limited Dynamic Length ïC and C++

Áactual length is indicated by a null character

Ĕ Dynamic ïSNOBOL4, Perl, JavaScript

×Evaluation (of character string types)

Ĕ Aid to writability

Ĕ As a primitive type with static length, they are inexpensive to provide

Ĕ Dynamic length is nice, but is it worth the expense?

× Implementation

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-22

User-Defined Ordinal Types

×An ordinal type is one in which the range of possible

values can be easily associated with the set of

positive integers

×Examples of primitive ordinal types in Java

Ĕinteger

Ĕchar

Ĕboolean

Ordinal Data Types

×Range of possible values can be easily associated with

the set of positive integers

×Enumeration types

Ĕuser enumerates all the possible values, which are symbolic

constants

enum days {Mon, Tue, Wed, Thu, Fri, Sat, Sun};

ĔDesign Issue:

ÁShould a symbolic constant be allowed to be in more than one type

definition?

ÁType checking

üAre enumerated types coerced to integer?

üAre any other types coerced to an enumerated type?

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-24

Enumeration Types

×All possible values, which are named constants, are
provided in the definition(user enumerates all the
possible values, which are symbolic constants)

×C# example
enum days {mon, tue, wed, thu, fri, sat, sun};

×Design issues

ĔIs an enumeration constant allowed to appear in more than
one type definition, and if so, how is the type of an
occurrence of that constant checked?

ĔAre enumeration values coerced to integer?

ĔAny other type coerced to an enumeration type?

Enumeration Data Types

×Examples
Ĕ Pascal
Ácannot reuse constants; can be used for array subscripts, for variables, case

selectors; can be compared

Ĕ Ada
Áconstants can be reused (overloaded literals); disambiguate with context or

type_nameô(one of them) (e.g, IntegerôLast)

Ĕ C and C++
Áenumeration values are coerced into integers when they are put in integer

context

Ĕ Java
ÁJava 4.0 and previous versions do not include an enumeration type, but

provides the Enumeration interface

ÁJava 5.0 includes enumeration type

Ácan implement them as classes

class colors {

public final int red = 0;

public final int blue = 1;

}

Java enum

A Java Enum is a special Java type used to define collections of

constants. More precisely, a Java enum type is a special kind of

Java class. An enum can contain constants, methods etc. Java

enums were added in Java 5.

public enum Level {

HIGH,

MEDIUM,

LOW

}

Level level = Level.HIGH;

Java enum

You can add fields to a Java enum. Thus, each constant enum value gets these

fields. The field values must be supplied to the constructor of the enum when

defining the constants. Here is an example:

public enum Level {

HIGH (3), //calls constructor with value 3

MEDIUM(2), //calls constructor with value 2

LOW (1) //calls constructor with value 1

; // semicolon needed when fields / methods follow

private final int levelCode;

public Level(int levelCode) {

this.levelCode = levelCode;

}

}

Subrange Data Types

×An ordered contiguous subsequence of an ordinal type
Ĕ e.g., 12..14 is a subrange of integer type

Ĕ Design Issue: How can they be used?

Ĕ Examples:
ÁPascal

ü subrange types behave as their parent types;

ü can be used as for variables and array indices
type pos= 0 .. MAXINT;

ÁAda
üSubtypes are not new types, just constrained existing types (so they are compatible);

can be used as in Pascal, plus case constants
subtype POS_TYPE is INTEGER range 0 ..INTEGER'LAST;

type Days is (mon, tue , wed, thu , fri , sat, sun);

subtype Weekdays is Days range mon.. fri ;

subtype Index is Integer range 1..100;

Day1: Days;

Day2: Weekday;

Day2 := Day1;

×Evaluation
ÁAid to readability - restricted ranges add error detection

Implementation of Ordinal Types

×Enumeration types are implemented as integers

×Subrange types are the parent types with code

inserted (by the compiler) to restrict assignments to

subrange variables

Arrays

×An aggregate of homogeneous data elements in which
an individual element is identified by its position in the
aggregate, relative to the first element

×Design Issues:

ĔWhat types are legal for subscripts?

ĔAre subscripting expressions in element references range
checked?

ĔWhen are subscript ranges bound?

ĔWhen does allocation take place?

ĔWhat is the maximum number of subscripts?

ĔCan array objects be initialized?

ĔAre any kind of slices allowed?

Arrays

×Indexing is a mapping from indices to elements

Ĕmap(array_name, index_value_list) ­ an element

×Index Syntax

ĔFORTRAN, PL/I, Ada use parentheses: A(3)

Ĕmost other languages use brackets: A[3]

×Subscript Types:

ĔFORTRAN, C - integer only

ĔPascal - any ordinal type (integer, boolean, char, enum)

ĔAda - integer or enum (includes boolean and char)

ĔJava - integer types only

Arrays

×Number of subscripts (dimensions)

Ĕ FORTRAN I allowed up to three

Ĕ FORTRAN 77 allows up to seven

ĔOthers - no limit

×Array Initialization

Ĕ Usually just a list of values that are put in the array in the order in which
the array elements are stored in memory

Ĕ Examples:

ÁFORTRAN - uses the DATA statement

Integer List(3)
Data List /0, 5, 5/

ÁC and C++ - put the values in braces; can let the compiler count them

int stuff [] = {2, 4, 6, 8};

ÁAda - positions for the values can be specified

SCORE : array (1..14, 1..2) :=

(1 => (24, 10), 2 => (10, 7),

3 =>(12, 30), others => (0, 0));

ÁPascal does not allow array initialization

Arrays

×Array Operations

Ĕ Ada

ÁAssignment; RHS can be an aggregate constant or an array name

ÁCatenation between single-dimensioned arrays

Ĕ FORTRAN 95

ÁIncludes a number of array operations called elementals because they are
operations between pairs of array elements

üE.g., add (+) operator between two arrays results in an array of the sums of
element pairs of the two arrays

Ĕ Slices

ÁA slice is some substructure of an array

ÁFORTRAN 90
INTEGER MAT (1 : 4, 1 : 4)

MAT(1 : 4, 1) - the first column

MAT(2, 1 : 4) - the second row

ÁAda - single-dimensioned arrays only
LIST(4..10)

Arrays

×Implementation of Arrays

ĔAccess function maps subscript expressions to an address in
the array

ĔSingle-dimensioned array

address(list[k])
= address(list[lower_bound])

+ (k-1)*element_size

= (address[lower_bound] ïelement_size)
+ (k * element_size)

ĔMulti -dimensional arrays

ÁRow major order: 3, 4, 7, 6, 2, 5, 1, 3, 8

ÁColumn major order 3, 6, 1, 4, 2, 3, 7, 5, 8

3 4 7

6 2 5

1 3 8

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-35

Subscript Binding and Array Categories

×Static: subscript ranges are statically bound

and storage allocation is static (before run-

time)
ĔAdvantage: efficiency (no dynamic allocation)

×Fixed stack-dynamic: subscript ranges are statically

bound, but the allocation is done at declaration time

ĔAdvantage: space efficiency

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-36

Subscript Binding and Array Categories

(continued)
×Stack-dynamic: subscript ranges are dynamically

bound and the storage allocation is dynamic (done at

run-time)

ĔAdvantage: flexibility (the size of an array need not be

known until the array is to be used)

×Fixed heap-dynamic: similar to fixed stack-dynamic:

storage binding is dynamic but fixed after allocation

(i.e., binding is done when requested and storage is

allocated from heap, not stack)

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-37

Subscript Binding and Array Categories

(continued)
×Heap-dynamic: binding of subscript ranges and

storage allocation is dynamic and can change any

number of times

ĔAdvantage: flexibility (arrays can grow or shrink during

program execution)

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-38

Subscript Binding and Array Categories

(continued)

×C and C++ arrays that include static modifier are

static

×C and C++ arrays without static modifier are fixed

stack-dynamic

×C and C++ provide fixed heap-dynamic arrays

×C# includes a second array class ArrayList that

provides fixed heap-dynamic

×Perl, JavaScript, Python, and Ruby support heap-

dynamic arrays

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-39

Array Initialization

×Some language allow initialization at the time of

storage allocation

ĔC, C++, Java, C# example

int list [] = {4, 5, 7, 83}

ĔCharacter strings in C and C++

char name [] = ǌfreddieǌ;

ĔArrays of strings in C and C++

char *names [] = {ǌBobǌ, ǌJakeǌ, ǌJoeǌ];

ĔJava initialization of String objects

String[] names = {ǌBobǌ, ǌJakeǌ, ǌJoeǌ};

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-40

Heterogeneous Arrays

×A heterogeneous arrayis one in which the elements

need not be of the same type

×Supported by Perl, Python, JavaScript, and Ruby

Array Initialization

×C-based languages
Ĕ int list [] = {1, 3, 5, 7}

Ĕ char *names [] = {ǌMikeǌ, ǌFredǌ, ǌMary Louǌ};

×Ada

Ĕ List : array (1..5) of Integer :=

(1 => 17, 3 => 34, others => 0);

×Python

ĔList comprehensions

list = [x ** 2 for x in range (12) if x % 3 ==

0]

puts [0, 9, 36, 81] in list

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-41

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-42

Arrays Operations

×APL provides the most powerful array processing operations
for vectors and matrixes as well as unary operators (for
example, to reverse column elements)

×Ada allows array assignment but also catenation

×Pythonôs array assignments, but they are only reference
changes. Python also supports array catenation and element
membership operations

×Ruby also provides array catenation

×Fortran provides elementaloperations because they are
between pairs of array elements

Ĕ For example, + operator between two arrays results in an array of the
sums of the element pairs of the two arrays

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-43

Rectangular and Jagged Arrays

×A rectangular array is a multi-dimensioned array in
which all of the rows have the same number of
elements and all columns have the same number of
elements

×A jagged matrix has rows with varying number of
elements

ĔPossible when multi-dimensioned arrays actually appear
as arrays of arrays

×C, C++, and Java support jagged arrays

×Fortran, Ada, and C# support rectangular arrays (C#
also supports jagged arrays)

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-44

Slices

×A slice is some substructure of an array; nothing

more than a referencing mechanism

×Slices are only useful in languages that have array

operations

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-45

Slice Examples

×Python
vector = [2, 4, 6, 8, 10, 12, 14, 16]

mat = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

vector (3:6) is a three-element array

mat[0][0:2] is the first and second element of the first row

of mat

×Ruby supports slices with the slice method

list.slice(2, 2) returns the third and fourth elements of
list

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-46

Implementation of Arrays

×Access function maps subscript expressions to an

address in the array

×Access function for single-dimensioned arrays:

address(list[k]) = address (list[lower_bound])

+ ((k-lower_bound) * element_size)

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-47

Accessing Multi-dimensioned Arrays

×Two common ways:

ĔRow major order (by rows) ïused in most languages

ĔColumn major order (by columns) ïused in Fortran

ĔA compile-time descriptor

for a multidimensional

array

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-48

Locating an Element in a Multi-dimensioned

Array

ÅGeneral format
Location (a[I,j]) = address of a [row_lb,col_lb] +
(((I - row_lb) * n) + (j - col_lb)) * element_size

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-49

Compile-Time Descriptors

Single - dimensioned array Multidimensional array

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-50

Associative Arrays

× An associative arrayis an unordered collection of

data elements that are indexed by an equal number

of values called keys

Ĕ User-defined keys must be stored

× Design issues:

- What is the form of references to elements?

- Is the size static or dynamic?

× Built-in type in Perl, Python, Ruby, and Lua

Ĕ In Lua, they are supported by tables

Associative Arrays

×Structure and Operations in Perl

ĔNames begin with %

ĔLiterals are delimited by parentheses

Ĕ%hi_temps = ("Monday" => 77, "Tuesday" => 79,é);

ĔSubscripting is done using braces and keys

Ĕe.g., $hi_temps{"Wednesday"} = 83;

×Elements can be removed with delete

Ĕe.g., delete $hi_temps{"Tuesday"};

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-52

Record Types

×A record is a possibly heterogeneous aggregate of

data elements in which the individual elements are

identified by names

×Design issues:

ĔWhat is the syntactic form of references to the field?

ĔAre elliptical references allowed

Records

×Record Definition Syntax

ĔCOBOL uses level numbers to show nested records;

others use recursive definitions

ĔCOBOL
01 EMPLOYEE-RECORD.

02 EMPLOYEE-NAME.

05 FIRST PICTURE IS X(20).

05 MIDDLE PICTURE IS X(10).

05 LAST PICTURE IS X(20).

02 HOURLY-RATE PICTURE IS 99V99.

Level numbers (01,02,05) indicate their relative values in the

hierarchical structure of the record

PICTURE clause show the formats of the field storage locations

X(20): 20 alphanumeric characters

99V99: four decimal digits with decimal point in the middle

Records

×Ada:

Type Employee_Name_Type is record

First: String (1..20);

Middle: String (1..10);

Last: String (1..20);

end record;

type Employee_Record_Type is record

Employee_Name: Employee_Name_Type;

Hourly_Rate: Float;

end record;

Employee_Record: Employee_Record_Type;

Records

×References to Record Fields

×COBOL field references
field_name OF record_name_1 OF é OF record_name_n

e.g. MIDDLE OF EMPLOYEE-NAME OF EMPLOYEE_RECORD

×Fully qualified references must include all intermediate

record names

×Elliptical references allow leaving out record names as

long as the reference is unambiguous

- e.g., the following are equivalent:

FIRST, FIRST OF EMPLOYEE-NAME, FIRST OF EMPLOYEE-RECORD

Records

×Operations

ĔAssignment

ÁPascal, Ada, and C allow it if the types are identical

üIn Ada, the RHS can be an aggregate constant

ĔInitialization

ÁAllowed in Ada, using an aggregate constant

ĔComparison

ÁIn Ada, = and /=; one operand can be an aggregate constant

ĔMOVE CORRESPONDING

ÁIn COBOL - it moves all fields in the source record to fields with

the same names in the destination record

Comparing Records to Arrays

×Records are used when collection of data values is

heterogeneous

×Access to array elements is much slower than

access to record fields, because subscripts are

dynamic (field names are static)

×Dynamic subscripts could be used with record

field access, but it would disallow type checking

and it would be much slower

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-58

Implementation of Record Type

Offset address relative to
the beginning of the records
is associated with each field

Tuple Types

×A tuple is a data type that is similar to a record,

except that the elements are not named

×Used in Python, ML, and F# to allow functions to

return multiple values

ĔPython

ÁClosely related to its lists, but immutable

ÁCreate with a tuple literal

myTuple = (3, 5.8, ǋappleǋ)

Referenced with subscripts (begin at 1)

Catenation with + and deleted with del

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-59

Tuple Types (continued)

×ML

val myTuple = (3, 5.8, ǋappleǋ);

- Access as follows:

#1(myTuple) is the first element

- A new tuple type can be defined

type intReal = int * real ;

×F#

let tup = (3, 5, 7)

let a, b, c = tup This assigns a tuple to a

tuple pattern (a, b, c)
Copyright © 2012 Addison-

Wesley. All rights reserved.

1-60

List Types

×Lists in LISP and Scheme are delimited by

parentheses and use no commas

(A B C D) and (A (B C) D)

×Data and code have the same form

As data, (A B C) is literally what it is

As code, (A B C) is the function A applied to the

parameters B andC

×The interpreter needs to know which a list is, so if it

is data, we quote it with an apostrophe

ǋ(A B C)is data

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-61

List Types (continued)

×List Operations in Scheme

Ĕ CARreturns the first element of its list parameter

(CAR ǋ(A B C))returns A

Ĕ CDRreturns the remainder of its list parameter after the first

element has been removed

(CDR ǋ(A B C)) returns (B C)

- CONSputs its first parameter into its second parameter, a

list, to make a new list

(CONS ǋA (B C)) returns (A B C)

- LIST returns a new list of its parameters

(LIST ǋA ǋB ǋ(C D))returns (A B (C D))

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-62

List Types (continued)

×List Operations in ML

ĔLists are written in brackets and the elements are separated

by commas

ĔList elements must be of the same type

ĔThe Scheme CONSfunction is a binary operator in ML, ::

3 :: [5, 7, 9] evaluates to [3, 5, 7, 9]

ĔThe Scheme CARand CDRfunctions are named hd and tl ,

respectively

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-63

List Types (continued)

×F# Lists

ĔLike those of ML, except elements are separated by

semicolons and hd and tl are methods of the List class

×Python Lists

ĔThe list data type also serves as Pythonôs arrays

ĔUnlike Scheme, Common LISP, ML, and F#, Pythonôs lists

are mutable

ĔElements can be of any type

ĔCreate a list with an assignment

myList = [3, 5.8, "grape "]

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-64

List Types (continued)

×Python Lists (continued)

ĔList elements are referenced with subscripting, with

indices beginning at zero

x = myList[1] Sets x to 5.8

ĔList elements can be deleted with del

del myList[1]

ĔList Comprehensions ïderived from set notation

[x * x for x in range (6) if x % 3 == 0]

range (7) creates [0, 1, 2, 3, 4, 5, 6]

Constructed list: [0, 9, 36]

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-65

List Types (continued)

×Haskellôs List Comprehensions

ĔThe original

[n * n | n < - [1..10]]

×F#ôs List Comprehensions

let myArray = [| for i in 1 .. 5 - > [i * i) |]

×Both C# and Java supports lists through their generic

heap-dynamic collection classes, List and ArrayList ,

respectively

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-66

UnionsTypes

×A union is a type whose variables are allowed to store
different type values at different times during execution

×Design Issues for unions:

ĔWhat kind of type checking, if any, must be done?

Ĕ Should unions be integrated with records?

×Examples:

Ĕ FORTRAN - with EQUIVALENCE

ÁNo type checking

Ĕ Pascal

Áboth discriminated and nondiscriminated unions

type intreal =

record tagg : Boolean of

true : (blint : integer);

false : (blreal : real);

end;

ÁProblem with Pascalôs design: type checking is ineffective

Unions

×Example (Pascal)é

ĔReasons why Pascalôs unions cannot be type checked

effectively:

ÁUser can create inconsistent unions

(because the tag can be individually assigned)

var blurb : intreal;

x : real;

blurb.tagg := true; { it is an integer }

blurb.blint := 47; { ok }

blurb.tagg := false; { it is a real }

x := blurb.blreal; { assigns an integer to a real }

ÁThe tag is optional!

ÁNow, only the declaration and the second and last assignments are

required to cause trouble

Unions

×Examplesé

Ĕ Ada

Ádiscriminated unions

ÁReasons they are safer than Pascal:

üTag must be present

ü It is impossible for the user to create an inconsistent union (because tag

cannot be assigned by itself -- All assignments to the union must include

the tag value, because they are aggregate values)

Ĕ C and C++

Áfree unions (no tags)

ÁNot part of their records

üNo type checking of references

Ĕ Java has neither records nor unions

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-70

Ada Union Types

type Shape is (Circle, Triangle, Rectangle);

type Colors is (Red, Green, Blue);

type Figure (Form: Shape) is record

Filled: Boolean;

Color: Colors;

case Form is

when Circle => Diameter: Float;

when Triangle =>

Leftside, Rightside: Integer;

Angle: Float;

when Rectangle => Side1, Side2: Integer;

end case ;

end record ;

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-71

Ada Union Type Illustrated

A discriminated union of three shape variables

Implementation of Unions

type Node (Tag : Boolean) is

record

case Tag is

when True => Count : Integer;

when False => Sum : Float;

end case ;

end record ;

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-72

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-73

Evaluation of Unions

×Free unions are unsafe

ĔDo not allow type checking

×Java and C# do not support unions

ĔReflective of growing concerns for safety in programming

language

×Adaôs descriminated unions are safe

Sets

×A type whose variables can store unordered collections of distinct
values from some ordinal type

×Design Issue:

ĔWhat is the maximum number of elements in any set base type?

×Example

Ĕ Pascal

ÁNo maximum size in the language definition
(not portable, poor writability if max is too small)

ÁOperations: in, union (+), intersection (*), difference (-), =, <>, superset (>=),
subset (<=)

Ĕ Ada

Ádoes not include sets, but defines in as set membership operator for all
enumeration types

Ĕ Java

Áincludes a class for set operations

Sets

×Evaluation

ĔIf a language does not have sets, they must be simulated,

either with enumerated types or with arrays

ĔArrays are more flexible than sets, but have much slower

set operations

×Implementation

ĔUsually stored as bit strings and use logical operations for

the set operations

Pointers

×A pointer type is a type in which the range of values consists
of memory addresses and a special value, nil (or null)

×Uses:

Ĕ Addressing flexibility

Ĕ Dynamic storage management

×Design Issues:

ĔWhat is the scope and lifetime of pointer variables?

ĔWhat is the lifetime of heap-dynamic variables?

Ĕ Are pointers restricted to pointing at a particular type?

Ĕ Are pointers used for dynamic storage management, indirect
addressing, or both?

Ĕ Should a language support pointer types, reference types, or both?

×Fundamental Pointer Operations:

Ĕ Assignment of an address to a pointer

Ĕ References (explicit versus implicit dereferencing)

Pointers

×Problems with pointers:

Ĕ Dangling pointers (dangerous)

ÁA pointer points to a heap-dynamic variable that has been deallocated

ÁCreating one (with explicit deallocation):

üAllocate a heap-dynamic variable and set a pointer to point at it

üSet a second pointer to the value of the first pointer

üDeallocate the heap-dynamic variable, using the first pointer

Ĕ Lost Heap-Dynamic Variables (wasteful)

ÁA heap-dynamic variable that is no longer referenced by any program

pointer

ÁCreating one:

üPointer p1 is set to point to a newly created heap-dynamic variable

üp1 is later set to point to another newly created heap-dynamic variable

×The process of losing heap-dynamic variables is called

memory leakage

Pointers

×Examples:

ĔPascal

Áused for dynamic storage management only

ÁExplicit dereferencing (postfix ^)

ÁDangling pointers are possible (dispose)

ÁDangling objects are also possible

ĔAda

Áa little better than Pascal

ÁSome dangling pointers are disallowed because dynamic objects can

be automatically deallocated at the end of pointer's type scope

ÁAll pointers are initialized to null

ÁSimilar dangling object problem (but rarely happens, because explicit

deallocation is rarely done)

Pointers

×Examplesé

ĔC and C++

ÁUsed for dynamic storage management and addressing

ÁExplicit dereferencing and address-of operator

ÁCan do address arithmetic in restricted forms

ÁDomain type need not be fixed (void *)

float stuff[100];

float *p;

p = stuff;

*(p+5) is equivalent to stuff[5] and p[5]

*(p+i) is equivalent to stuff[i] and p[i]

(Implicit scaling)

void * - Can point to any type and can be type checked (cannot be
dereferenced)

Pointers

×Examplesé

ĔFORTRAN 90 Pointers

ÁCan point to heap and non-heap variables

ÁImplicit dereferencing

ÁPointers can only point to variables that have the TARGET attribute

ÁThe TARGET attribute is assigned in the declaration, as in:

INTEGER, TARGET :: NODE

ÁA special assignment operator is used for non-dereferenced references

REAL, POINTER :: ptr (POINTER is an attribute)

ptr => target (where target is either a pointer or a non-

pointer with the TARGET attribute))

This sets ptr to have the same value as target

Pointers

×Examplesé

ĔC++ Reference Types

ÁConstant pointers that are implicitly dereferenced

ÁUsed for parameters

ÁAdvantages of both pass-by-reference and pass-by-value

ĔJava

ÁOnly references

ÁNo pointer arithmetic

ÁCan only point at objects (which are all on the heap)

ÁNo explicit deallocator (garbage collection is used)

ÁMeans there can be no dangling references

ÁDereferencing is always implicit

Pointers

×Evaluation

ĔDangling pointers and dangling objects are problems, as is

heap management

ĔPointers are like goto's--they widen the range of cells that

can be accessed by a variable

ĔPointers or references are necessary for dynamic data

structures--so we can't design a language without them

Pointers

int x = 10;

int *p;

p = &x;

p contains the address of x in memory.

p

x10

×A pointer is a variable holding an address value

Pointers

int x = 10;

int *p;

p = &x;

*p = 20;

*p refers to the value stored in x.

p

x20

×A pointer is a variable holding an address value

Pointers

int x = 10;

int *p;

p = &x;

*p = 20;

Declares a pointer

to an integer

& is address operator

gets address of x

* dereference operator

gets value at p

Pointers

×Pointers are designed for two kinds of uses

Ĕ Provide a method for indirect addressing

(see example on the previous slides)

Ĕ Provide a method of dynamic storage management

int *ip = new int[100];

×Pointer dereferencing

Ĕ Implicit: dereferenced automatically

ÁIn Fortran 90, pointers have no associated storage until it is allocated or
associated by pointer assignment

REAL, POINTER :: var

ALLOCATE (var)

var = var + 2.3

(no special symbol needed to dereference)

Ĕ Explicit: In C++, use dereference operator (*)

Problems with Pointers

×Dangling pointers (dangerous)

Ĕ points to deallocated memory

int *p;

void trouble () {

int x;

*p = &x;

return;

}

main() {

trouble();

}

×Lost Heap-Dynamic Variables

int *p = new int[10]; /* p points to anonymous variable */

int y;

p = &y; /* space for anonymous variable lost */

Solutions to Dangling Pointer Problem

×Tombstones

Ĕ Every heap-dynamic variable includes a special cell, called a

tombstone, that is itself a pointer to the heap-dynamic variable

Ĕ Actual pointer points only at tombstones and never to heap dynamic

variables

ĔWhen heap-dynamic variable is deallocated, tombstone remains but

set to nil

Ĕ This prevents pointer from ever pointing to a deallocated variable

Ĕ Any reference to any pointer that points to nil tombstone can be

detected as an error

Ĕ Problem: costly in both time and space

ÁEvery access to heap-dynamic variable through a tombstone requires one

more level of indirection, which consumes an additional machine cycle

on most computers

Solutions to Dangling Pointer Problem

×Locks-and-keys approach

Ĕ Pointer values are represented as ordered pairs (key,address)

Ĕ Heap-dynamic variables are represented as storage for variable plus a
header cell that stores an integer lock value

ĔWhen heap-dynamic variable is allocated, a lock value is created and
placed both in the lock cell (of heap-dynamic variable) and key cell
(of pointer)

Ĕ Every access to the dereferenced pointer compares key value of
pointer to lock value of heap-dynamic variable

ĔWhen heap-dynamic variable is deallocated, its lock value is cleared
to an illegal lock value

ĔWhen dangling pointer is dereferenced, its address value is still intact,
but its key value no longer match the lock

×Leave deallocation to the runtime system

ĔGarbage collection in Java

COME 214. 90

Type Checking

Generalize the concept of operands and operators to include

subprograms and assignments
ÅType checkingis the activity of ensuring that the operands of an

operator are of compatible types

ÅA compatible typeis one that is either legal for the operator, or is

allowed under language rules to be implicitly converted, by

compiler-generated code, to a legal type.

ÅThis automatic conversion is called a coercion.

ÅA type erroris the application of an operator to an operand of an

inappropriate type

ÅNote:

If all type bindings are static, nearly all checking can be static

If type bindings are dynamic, type checking must be dynamic

COME 214. 91

Strong Typing

A programming language is strongly typedif

Åtype errors are always detected

ÅThere is strict enforcement of type rules with no

exceptions.

ÅAll types are known at compile time, i.e. are statically

bound.

ÅWith variables that can store values of more than one

type, incorrect type usage can be detected at run-time.

ÅStrong typing catches more errors at compile time than

weak typing, resulting in fewer run-time exceptions.

COME 214. 92

Which languages have strong typing?

ÅFortran 77 isnôt because it doesnôt check parameters and because of

variable equivalence statements.

ÅThe languages Ada, Java, and Haskell are strongly typed.

ÅPascalis (almost) strongly typed, but variant records screw it up.

ÅC and C++ are sometimes described as strongly typed, but are

perhaps better described as weakly typed because parameter type

checking can be avoided and unions are not type checked

ÅCoercion rules strongly affect strong typingðthey can weaken it

considerably (C++ versus Ada)

COME 214. 93

Type Compatibility

Type compatibility by namemeans the two variables have compatible

types if they are in either the same declaration or in declarations that

use the same type name

ÅEasy to implement but highly restrictive:

ÅSubranges of integer types arenôt compatible with integer types

ÅFormal parameters must be the same type as their corresponding

actual parameters (Pascal)

Type compatibility by structuremeans that two variables have compatible

types if their types have identical structures

ÅMore flexible, but harder to implement

COME 214. 94

Type Compatibility

Consider the problem of two structured types.

Suppose they are circularly defined

ÅAre two record types compatible if they are structurally the
same but use different field names?
ÅAre two array types compatible if they are the same except that

the subscripts are different? (e.g. [1..10] and [-5..4])
ÅAre two enumeration types compatible if their components are

spelled differently?

With structural type compatibility, you cannot
differentiate between types of the same structure
(e.g. different units of speed, both float)

COME 214. 95

Type Compatibility Language examples

Pascal:usually structure, but in some cases name is used
(formal parameters)

C: structure, except for records

Ada: restricted form of name
ïDerived types allow types with the same structure to be

different
ïAnonymous types are all unique, even in:

A, B : array (1..10) of INTEGER:

COME 214. 96
Copyright © 2018 Pearson. All rights reserved. 1-96

Summary

ÅThe data types of a language are a large part of
what determines that languageôs style and
usefulness

ÅThe primitive data types of most imperative
languages include numeric, character, and
Boolean types

ÅThe user-defined enumeration and subrange types
are convenient and add to the readability and
reliability of programs

ÅArrays and records are included in most
languages

ÅPointers are used for addressing flexibility and to
control dynamic storage management

