Welcome to Python!

CS 41:hap.py code
The Python Programming Language

Agenda

Agenda

Welcomel

Agenda

Welcomel
Why Take C5417

Agenda

Welcomel
Why Take C5417
What is Python?

Agenda

Welcomel
Why Take C5417
What is Python?

LOgIstics

Agenda

Welcome!
Why Take C5417
What is Python?

LOgIstics

Python Crasn Course

INnstructor

Sam Redmond

sredmond@stanford.edu

Course Helpers

Course Helpers
Divya Saini Shrey Gupta Andrew Kodrih

Christina Ramsey Brahm Capoor Emily Cohen Norah Borus ~ Colin Kincaid

s T

Ali Malik

*:

|

i

L7 F ¥

(RR88RN;.
"l T Y YA

]
B A X YW

:‘lea,‘

Course Helpers
Divya Saini Shrey Gupta Andrew Kodrih

Christina Ramsey Brahm Capoor Emily Cohen Norah Borus Colin Kincaid Ali Malik

W

277 ¥

;_QJ?FQ"

i-“""e’.’h.

i
(22908,

FS

s?%ff@staﬁfordpyfhon.com

mailto:staff@stanfordpython.com?subject=

You

You

- Pupblic Poli
Business Public Policy Computer Science

Physics Fducation | | | | |
Computational Biology Biomedical Computation

cnvironmental Engineering 5 ccics Mathematics

| Medicine
Law Asian American Studies Psychology Chemistry

International Relations
Chinese

Management Science & Engineering ~ 1StOrY Mechanical Engineering
Geophysics

Neuroscience Fconomics Aero/Astro .
Symbolic Systems

rinance Philosophy Fnglish Mathematical & Computational Science

Energy Resources Engineering Bioengineering . MuUsic
. . . Linguistics .
Biomedical Informatics Electrical Engineering Statistics

| Cast Asian Studies Science, Technology and Society
Product Design Art History

Why C5417

Course Goals

Course Goals

Develop skills with Python fundamentals, both old and new

Course Goals

1. Develop skills with Python fundamentals, both old and new

2. Learn to recognize and write "good" Python

Course Goals

1. Develop skills with Python fundamentals, both old and new
2. Learn to recognize and write "good" Python

3. Gain experience with practical Python tasks

Course Goals

1. Develop skills with Python fundamentals, both old and new
2. Learn to recognize and write "good" Python

3. Gain experience with practical Python tasks

4. Understand Python's strengths (and weaknesses)

Course Goals

1. Develop skills with Python fundamentals, both old and new
2. Learn to recognize and write "good" Python

3. Gain experience with practical Python tasks

bl e e e Y

4. Understand Python's strengths{and weaknesses)

aE E EEE " S EE S S S e m m P

Questions

Questions

What is Python?

Questions

What is Python?
Why Python?

Questions

What is Python?
Why Python?
Will Python help me get a job?

History of Python

Guido var

BD

History of Python

Rossum

BD

History of Python

Rossum

Python 1: 1994

History of Python

Python 1: 1994
Python 2: 2000

Guido van Rossum
BDFL

History of Python

Python 1: 1994
Python 2: 2000
Python 3: 2008

Guido van Rossum
BDFL

Guido var

BD

History of Python

Rossum

Python 1: 1994
Python 2: 2000
Python 3: 2008

Specifically, we're uging
Python 3.7.2

Philosophy of Python

>>> 1mport this

>>> 1mport this

The Zen of Python, by Tim Peters

>>> 1mport this

The Zen of Python, by Tim Peters
Beautiful 1s better than ugly.

>>> 1mport this

The Zen of Python, by Tim Peters
Beautiful 1s better than ugly.

Explicit 1s better than implicit.

>>> 1mport this

The Zen of Python, by Tim Peters
Beautiful 1s better than ugly.
Explicit 1s better than implicit.

Simple 1s better than complex.

>>> 1mport this

The Zen of Python, by Tim Peters
Beautiful 1s better than ugly.
Explicit 1s better than implicit.
Simple 1s better than complex.

Complex 1s better than complicated.

>>> 1mport this

The Zen of Python, by Tim Peters
Beautiful 1s better than ugly.
Explicit 1s better than implicit.
Simple 1s better than complex.
Complex 1s better than complicated.
Flat 1s better than nested.

>>> 1mport this

The Zen of Python, by Tim Peters
Beautiful 1s better than ugly.
Explicit 1s better than implicit.
Simple 1s better than complex.
Complex 1s better than complicated.
Flat 1s better than nested.

Sparse 1s better than dense.

>>> 1mport this

The Zen of Python, by Tim Peters
Beautiful 1s better than ugly.
Explicit 1s better than implicit.
Simple 1s better than complex.
Complex 1s better than complicated.
Flat 1s better than nested.
Sparse 1s better than dense.

Readability counts.

>>> Import this

>>> Import this

Special cases aren't special enough to break the rules.

>>> Import this

Special cases aren't special enough to break the rules.
Although practicality beats purity.

>>> Import this

Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.

>>> Import this

Special cases aren't special enough to break the rules.
Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

>>> Import this

Special cases aren't special enough to break the rules.
Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambigquity, refuse the temptation to guess.

>>> Import this

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambigquity, refuse the temptation to guess.

There should be one—— and preferably only one ——obvious way to do 1it.

>>> Import this

Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.

Unless explicitly silenced.
In the face of ambigquity, refuse the temptation to guess.
There should be one—— and preferably only one ——obvious way to do 1it.

Although that way may not be obvious at first unless you're Dutch.

>>> Import this

Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.

Unless explicitly silenced.
In the face of ambigquity, refuse the temptation to guess.
There should be one—— and preferably only one ——obvious way to do 1it.

Although that way may not be obvious at first unless you're Dutch.

Now 1s better than never.

>>> Import this

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambigquity, refuse the temptation to guess.

There should be one—— and preferably only one ——obvious way to do 1it.
Although that way may not be obvious at first unless you're Dutch.
Now 1s better than never.

Although never 1s often better than xrightx now.

>>> Import this

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambigquity, refuse the temptation to guess.

There should be one—— and preferably only one ——obvious way to do 1it.
Although that way may not be obvious at first unless you're Dutch.
Now 1s better than never.

Although never 1s often better than xrightx now.

IfT the implementation 1s hard to explain, 1t's a bad 1idea.

>>> Import this

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambigquity, refuse the temptation to guess.

There should be one—— and preferably only one ——obvious way to do 1it.
Although that way may not be obvious at first unless you're Dutch.
Now 1s better than never.

Although never 1s often better than xrightx now.

IfT the implementation 1s hard to explain, 1t's a bad 1idea.

IfT the implementation 1s easy to explain, 1t may be a good 1idea.

>>> Import this

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambigquity, refuse the temptation to guess.

There should be one—— and preferably only one ——obvious way to do 1it.
Although that way may not be obvious at first unless you're Dutch.
Now 1s better than never.

Although never 1s often better than xrightx now.

IfT the implementation 1s hard to explain, 1t's a bad 1idea.

IfT the implementation 1s easy to explain, 1t may be a good 1idea.
Namespaces are one honking great idea — let's do more of those!

Programmers are more
important than programs

"Hello World"in Java

HelloWorld {
main(String[] args) {
System.out.printin() ;

Yuek

"Hello World”" in C++

#inc lude <iostream>

using namespace std;

int main() {

cout << "Hello World!" << endl;

Double Yuck

"Hello Worla"in Python

("Hello world!'")

Wno Uses Python?

Python at Stanford

Python at Stanford

CEE 345:Network Analysis for Urban Systems

COMM 177P:Programming in Journalism

COMM 382:Big Data and Causal Inference

CS 375: Large-Scale Neural Network Modeling for Neuroscience
GENE 211: Genomics

LINGUIST 276: Quantitative Methods in Linguistics

MI 245: Computational Modeling of Microbial Communities
MS&E 448: Big Financial Data and Algorithmic Trading
PHYSICS 368: Computational Cosmology and Astrophysics
PSYCH 162: Brain Networks

STATS 155: Statistical Methods in Computational Genetics

Python in Business

Python in Business

Dropbox
o R
venmo

Quora Google @
CJL "UOUWL

You g')

Other Python Users

Other Python Users

INDUSTRIA[

LIGHT & MAGIC

5-Minute Break

LOQIStICS

LOQIstiCS

LOQIstiCS

Lectures Tue / Thu, 4:30-5:50, 380-380D

LOQIstiCS

Lectures Tue / Thu, 4:30-5:50, 380-380D
Units 2 CR/NC

LOQIstiCS

Lectures Tue / Thu, 4:30-5:50, 380-380D
Units 2 CR/NC
Website stanfordpython.com

LOQIstiCS

Lectures Tue / Thu, 4:30-5:50, 380-380D
Units 2 CR/NC

Bookmark it! We'll pogt announcements,

Website stanfordpython.com

lecture glideg, and handoutg online.

LOQIstiCS

Lectures Tue / Thu, 4:30-5:50, 380-380D

Units 2 CR/NC
Website stanfordpython.com
Prereqs C5106B/X or equivalent

Bookmark it! We'll pogt announcements,
lecture glideg, and handoutg online.

LOQIstiCS

Lectures Tue / Thu, 4:30-5:50, 380-380D
Units 2 CR/NC

Bookmark it! We'll pogt announcements,

Website stanfordpython.com

lecture glideg, and handoutg online.

Prereqs C5106B/X or equivalent
Enrollment Cap 40 (

LOQIstiCS

LOQIstiCS

Attendance Required. At most 2 unexcused absences.

LOQIstiCS

iamhere.gtanfordpython.com

Attendance Required. At most 2 unexcused absences.

http://iamhere.stanfordpython.com

LOQIstiCS

iamhere.gtanfordpython.com

Attendance Required. At most 2 unexcused absences.

Auditing Encourageo

http://iamhere.stanfordpython.com

LOQIstiCS

iamhere.gtanfordpython.com

Attendance Required. At most 2 unexcused absences.

Auditing Encourageo
Waitlist Rolling

http://iamhere.stanfordpython.com

LOQIstiCS

iamhere.gtanfordpython.com

Attendance Required. At most 2 unexcused absences.

Auditing Encourageo
Waitlist Rolling

Piazza Sign up!

http://iamhere.stanfordpython.com

LOQIstiCS

LOQIstiCS

Assignments 4 in total

LOQIstiCS

Assignments 4 in total

Grading Functionality and style, on a checkmark scale

LOQIstiCS

Assignments 4 in total
Grading Functionality and style, on a checkmark scale

Credit For both functionality and style, average a check

LOQIstiCS

Assignments 4 in total
Grading Functionality and style, on a checkmark scale
Credit For both functionality and style, average a check

Late Days Two 24-hour extensions

LOQIstiCS

Assignments 4 in total

Grading Functionality and style, on a checkmark scale
Credit For both functionality and style, average a check
Late Days Two 24-hour extensions

Honor Code Don't cheat

LOQIstiCS

Assignments 4 in total

Grading Functionality and style, on a checkmark scale

Credit For both functionality and style, average a check

Late Days Two 24-hour extensions

Honor Code Don't cheat

More gpecitics can be found
on the Courge [nfo handout

The Big Picture

The Road Ahead - The Python Language

The Road Ahead - The Python Language

Week 1 Python Fundamentals
Week 2 Data Structures
Week 3 Functions

Week 4 Functional Programming
Week 5 Object-Oriented Python

The Road Ahead - Python Tools

The Road Ahead - Python Tools

Week 6 Standard Library
Week 7 Third-Party Tools
Week 8 Ecosystem
Week 9 Advanced Topics
Week 10 Projects!

| et's Get Started!

Python Basics

Interactive Interpreter
Comments

Variables and Types
Numbers and Booleans

Strings and Lists

Console I/0
Control Flow
Loops

Functions

Interactive Interpreter

sredmond$

Interactive Interpreter

sredmond$ python3

Interactive Interpreter

sredmond$ python3
Python 3.7.2 (default, Dec 27 2018, 07:35:006)

[Clang 10.0.0 (clang-1000.11.45.5)] on darwin
Type "help", "copyright", "credits" or "license" for more information.

>>2>

Interactive Interpreter

sredmond$ python3
Python 3.7.2 (default, Dec 27 2018, 07:35:006)

[Clang 10.0.0 (clang-1000.11.45.5)] on darwin
Type "help", "copyright", "credits" or "license" for more information.

>>2>

You can write Python code right here!

A Big Deal

A Big Deal

'mmediate gratification!

A Big Deal

'mmediate gratification!

Sandpoxed environment to experiment with Python

A Big Deal

'mmediate gratification!
Sandpoxed environment to experiment with Python

Shortens code-test-debug cycle to seconds

A Big Deal

'mmediate gratification!
Sandpoxed environment to experiment with Python

Shortens code-test-debug cycle to seconds

The interactive interpreter ig your new best friend

Pound Sign
Haghtag

Sharp

Number Sign

Octothorpe

Comments

Comments

Single line comments start with a '#

Comments

Single line comments start with a '#'

Multiline comments can be written between
three "s and are often used as function

and module comments.

Variaples

Variables

No gemicolon!

Variables

Variables

X = 2 No gemicolon!
X x [/
=> 14

X

X

Variables

No gemicolon!

%
NN

=> 14

"Hello, I'm "

> +H X X

X

— No gemicolon!
x [

=> 14

= "Hello, I'm
+ "Python!"

Variables

> "Hello, I'm Python"

> +H X X

X

— No gemicolon!
 /

=> 14

= "Hello, I'm
+ "Python!"

Variables

What happened here?!

> "Hello, I'm Python"

Where's My Type?

In Java or C++

1Nt X =

0,

Where's My Type?

In Python

0

X

Where's My Type?

Variables in Python are dynamically-typed: declared without an explicit type

However, objects have a type, so Python knows the type of a variable, even if you don't

Where's My Type?

Variables in Python are dynamically-typed: declared without an explicit type

However, objects have a type, so Python knows the type of a variable, even if you don't

type(1) # => <class 'int's
type("Hello") # => <class 'str's
type) # => <class 'NoneType'>

Where's My Type?

Variables in Python are dynamically-typed: declared without an explicit type

However, objects have a type, so Python knows the type of a variable, even if you don't

Thig ig the came object

type(1) # => <class TINT'> <114 the literal type int

type("Hello") # => <class 'str's
type) # => <class 'NoneType'>

Where's My Type?

Variables in Python are dynamically-typed: declared without an explicit type

However, objects have a type, so Python knows the type of a variable, even if you don't

type(1) #
type('"Hello") #
type() #
type(int) #

type(type(int))#

<class
<class

<class

<class

<class

‘int'> e

'str'>

'NoneType'>

Thig ig the came object

ag the literal type int

I.typel>

I.typel>

Python's dynamic type system
i fageinating! More on Wed.

Numbpers anad Matnh

Numbers and Math

Numbers and Math

== 3 (int)
=> 3.0 (float)

Python hag two numeric types
int and float

Numbers and Math

Python hag two numeric types
int and float

4
—~ (O
+ O
I
Y

S
m M
A A
i
H

S
Mm M

> 2
> 7
> 20

#

#
=

1
1

1 +
10 % 2

2

3

3.
> 5.0

T =
T =
T =
T =

H*

H H H H HF HH

+:

H H

Numbers and Math

(int)

3
3.0 (float)

NN

U1 W W N
S

2 (integer division)
1 (integer modulus)
16 (exponentiation)

Python hag two numeric types
int and float

Booleans

Booleans

True # => True . |
False # => False bool ig a subtype of int, where

True == 1and False ==

Booleans

True => True

° "
False # => False bool g 3 gubfgpe of 1nt, where
rue 4 —> Falee True == 1and False ==
True False # => False
True False # => True (short-circuits)

Booleans

=> [rue

True : .
=> False bool ig a subtype of int, where

False

True == 14and False ==

not True => False

=> False
True (short-circuits)

True and False
True or False

| — => True
2 %k 3 == => False
1 =1 => False

HFEFHRF HHHF HHEH
|1
\Y

2 x 3 I=5 => True

Booleans

=> [rue

True . :
=> False bool ig a subtype of int, where

False

True == 14and False ==

not True => False

=> False
=> True (short-circuits)

True and False
True or False

HIFHRHF HFHEHHF HFHFBH HH
|1
\Y

1 == => [Jrue

2 %k 3 == False

1 1=1 => False

2 % 3 1=5 => True

1 < 10 => Jrue

2 >= 0 => True

1 <2 < 3 => True (1 < 2 and 2 < 3)
1 <2 >= 3 => False (1 < 2 and 2 >= 3)

Strings

Strings

Strings

No char in Python!
Both ' and " create atring literalg

Strings

No char in Python!
Both ' and " create atring literalg

greeting = 'Hello’
group = "wgrld" # Unicode by default

Strings

No char in Python!
Both ' and " create atring literalg

greeting = 'Hello’
group = "wgrld" # Unicode by default

greeting + ' ' + group + "!" # == 'Hello wgrld!"’

Indexing

Indexing

1 2 3 4 5 0

'Arthur

s[0] == "A°
S[l] —— I [
s[4] == "u’
s[6] # Bad!

Negative Indexing

1 2 3 4 5 0

'Arthulrg

6 =5 =4 -3 =2 —

Negative Indexing

-6 -5-4-3-2-1 0

S[_l] == lr.l
S[_Z] == |u|
S[_4] == |-t|
S[_6] == |A|

Slicing

1 2 3 4 5 0

'Arthur

s[0:2] == 'Ar'
s[3:6] == 'hur'

Slicing

1 2 3 4 5 0

'Arthur

s[0:2] == 'Ar'

Strings

Implicitly startg at O ~ 5 /lmplich‘[g ends at the end
sl:2] == "Ar’

5[3:] == 'hur

Strings

s='Arthur’

Implicitly startg at O ~ 5 /lmplich‘[g ends at the end
sl:2] == "Ar’

5[3:] == 'hur

Strings

s='Arthur’

Implicitly startg at O ~ 5 /lmplich‘[g ends at the end
sl:2] == "Ar’

5[3:] == 'hur

Strings

1 2 3 4 5 0

'Arthur

/O n algo page
s[1:5:2] == 'rh'
s[4:.—2] == 'ytA'

One way to

/Oan algo pasg a gtep Qize
s[1:5:2] == 'rh'
s[4::-2] == "utA'’
s[::-1] == 'ruhtrA'

Converting Values

Converting Values

str(42) # => "42" All objects have

atring repregentation

Converting Values

str(42) # => "42" All objects have

atring repregentation
int("42") # => 42

str(42)
int("42")
float("2.5")

Converting Values

#
#
#

=> II42II
=> 47
=> 2.5

All objects have a
atring repregentation

str(42)
int("42")
float("2.5")
float("1")

Converting Values

#

#
#
#

=> ''42"
=> 42

=> 2.5
=> 1.0

All objects have a
atring repregentation

| IStS

Dive into Python data gtructures Week 2!

| IStS

easy_as = [1,2,3]

| IStS

Square brackete delimit listg

VN
easy_as = [1,2,3]

| IStS

Square brackete delimit listg

VN
easy_as = [1,2,3]

|]

Commag geparate elementg

| IStS

\Versatile

Incredibly common

~ ArrayList / Vector

Basic Lists

Basic Lists

Create a new list

empty = []

letters = ['a', 'b', 'c', 'd']
numbers = [2, 3, 5]

BasIC LIStS

Create a new list

empty = []

letters = ['a', 'b', 'c', 'd']
numbers = [2, 3, 5]

Lists can contain elements of different types
mixed = [4, 5, "seconds"]

BasIC LIStS

Create a new list

empty = []

letters = ['a', 'b', 'c', 'd']
numbers = [2, 3, 5]

Lists can contain elements of different types
mixed = [4, 5, "seconds"]

Append elements to the end of a list
numbers.append(7) # numbers == [2, 3, 5, 7]
numbers.append(11) # numbers == [2, 3, 5, 7, 11]

Inspecting List Elements

Inspecting List Elements

[Ia Ibl ICI Idl]
[2, 3 5, 7, 11]

letters
numbers

Inspecting List Elements

[a Ibl ICI Idl]
[2, 3 5, 7, 11]

letters
numbers

Access elements at a particular 1ndex
numbers[0] # => 2
numbers[-1] # => 11

Inspecting List Elements

[Ial’ Ibl’ ICI’ Idl]
12, 3, 5, 7, 11]

letters
numbers

Access elements at a particular 1ndex
numbers[0] # => 2
numbers[-1] # => 11

You can also slice lists — the same rules apply
letters[:3] # => ['a', 'b', 'c']
numbers[1:-1] # => [3, 5, 7]

Nested Lists

Nested Lists

Lists really can contain anything - even other Llists!
combo = [letters, numbers]
combo # => [['a', 'b', 'c', 'd'}, 12, 3, 5, 7, 11]]

Nested Lists

Lists really can contain anything - even other Llists!
combo = [letters, numbers]

combo # => [['a', 'b', 'c', 'd']l, [2, 3,5, 7, 11]1]
combo[0] # == ['a', 'b', 'c', 'd']

Nested Lists

Lists really can contain anything - even other Llists!
combo = [letters, numbers]

combo # => [['a', 'b', 'c', 'd']l, [2, 3,5, 7, 11]1]
combo[0] # == ['a', 'b', 'c', 'd']

combo[0] [1] # => 'Db'

Nested Lists

Lists really can contain anything - even other Llists!
combo = [letters, numbers]

combo # => [['a', 'b', 'c', 'd']l, [2, 3,5, 7, 11]1]
combo[0] # == ['a', 'b', 'c', 'd']

combo[0] [1] # => 'Db'

combo[1][2:] # => [5, 7, 11]

General Queries

General Queries

Length (len)

len([]) # => 0

len("python") # => 6

len([4, 5, "seconds"]) # => 3

General Queries

Length (len)

len([]) # => 0

len("python") # => 6

len([4, 5, "seconds"]) # => 3

Membership (in)
9 in [l # => False

General Queries

Length (len)

len([]) # => 0

len("python") # => 6

len([4, 5, "seconds"]) # => 3

Membership (in)
9 in [l # => False

y' 1n "python" # => True

General Queries

Length (len)

len([]) # => 0

len("python") # => 6

len([4, 5, "seconds"]) # => 3

Membership (in)

@ in [] # => False

'y' 1n "python" # => True

"minutes" in [4, 5, "seconds"] # => False

Console /O

Console |/O

Console |/O

Read a string from the user input prompts the uger for input

>>> name = input("What is your name?)

Console |/O

Read a string from the user input prompts the uger for input

>>> name = input(“What is your name? ')
What 1s your name?

Console |/O

Read a string from the user input prompts the uger for input

>>> name = input("What is your name? ')
What 1s your name? Sam

Console |/O

Read a string from the user input prompts the uger for input

>>> name = input("What is your name? ')
What 1s your name? Sam

>>> print("“I'm Python. Nice to meet you,", name)
I'm Python. Nice to meet you, Sam

Console |/O

Read a string from the user

input prompts the uger for input

>>> name = input("What is your name?)

What 1s your name? Sam

>>> print("I'm Python. Nice to meet you,", name)

I'm Python. Nice to meet you,

Sam

print can be uged in many difterent wayg!

Control Flow

f Statements

1T the world 1s flat:
("Don't fall off!")

f Statements

/No parenthegeg needed\

1T the world 1s flat:
("Don't fall off!")

f Statements

/No parentheses needed \Colon

1T the world 1s flat:

/

No curly braceg!

("Don't fall off!")

f Statements

olon

/No parentheges needed\c

1T the world 1s flat

|

No curly braceg!

/

("Don't fall off!")

|

Use 4 gpaces
for indentation

4 Spaces?! No Braces’!

Zen of Python

Readability counts

Can be configured in most development environmentg

elif and else

1T some_condition:

print("Some condition holds")

el1T other condition: Joro0 or more e Life

print("O0ther condition holds")
else:

print("Neither condition holds")

else ig optional

Python hae no switch atatement,

opting for if/elif/else chaing

Palindrome? Qpelled the came

backwarde and forwardg

Palindrome? Qpelled the came

backwarde and forwardg

Is a user—-submitted word a palindrome?
word = input("Please enter a word: ")

reversed word = word[::-1]

Palindrome? Qpelled the came

backwarde and forwardg

Is a user—-submitted word a palindrome?

word = input("Please enter a word: ")

reversed_word = word[::-1]«————Dauce: How did thic work again?

Palindrome? Qpelled the came

backwarde and forwardg

Is a user—-submitted word a palindrome?

word = input("Please enter a word: ")

reversed_word = word[::-1]«————Dauce: How did thic work again?

word == reversed word:

("Hooray! You entered a palindrome")

Palindrome? Qpelled the came

backwarde and forwardg

Is a user—-submitted word a palindrome?

word = input("Please enter a word: ")

reversed_word = word[::-1]«————Dauce: How did thic work again?

1T word == reversed word:
print("Hooray! You entered a palindrome")
else:

print("You did not enter a palindrome")

Truthy and Falsy

'Falsy' values

bool(None)
bool(False)
bool(0)
bool(0.0)
bool("'")

H

=
o
A
=

—
—
—
—
—

False
False
False
False
False

Truthy and Falsy

Truthy and Falsy

'Falsy' values
bool(None) # => False

bool(False) # => False
bool(0) # => False
bool(0.0) # => False
bool('") # => False

Empty data structures are 'falsy'
bool([]) # => False

Truthy and Falsy

'Falsy' values
bool(None) # => False

bool(False) # => False
bool(0) # => False
bool(0.0) # => False
bool('") # => False

Empty data structures are 'falsy'
bool([]) # => False

Everything else 1s 'truthy'

bool(41) # => True
bool('abc') # => True
bool([1, 'a', []]) # => True

Truthy and Falsy

'Falsy' values
bool(None) # => False

bool(False) # => False
bool(0) # => False
bool(0.0) # => False
bool('") # => False

Empty data structures are 'falsy'
bool([]) # => False

Everything else 1s 'truthy'

bool(41) # => True
bool('abc') # => True
bool([1, 'a', []]) # => True

bool([False]) # => True
bool(int) # => True

Checking for Truthiness

with Steven Colbert

Checking for Truthiness

How should we check for an empty list?

data

[]

with Steven Colbert

Checking for Truthiness

How should we check for an empty list?

data

[]

with Steven Colbert

Checking for Truthiness

How should we check for an empty list?
data = []

1T data:

process(data)

with Steven Colbert

Checking for Truthiness

How should we check for an empty list?
data = []

1T data:
process(data)
else:

print("There's no data!")

with Steven Colbert

Checking for Truthiness

with Steven Colbert

How should we check for an empty list?

data = []

1T data:
process(data)
else:

print("There's no data!")

You ghould almogt never test
1f expr == True

| OOPS

-0 LOOPS

for 1tem 1n 1terable:
process(item)

-0 LOOPS

Loop explicitly over data

for 1tem 1n 1terable:
process(item)

-0 LOOPS

Loop explicitly over data

Stringg, ligte, etc.

for 1tem 1n 1terable:
process(item)

-0 LOOPS

Loop explicitly over data

Stringg, ligte, etc.

for 1tem 1n 1terable:
process(item)

No loop counter!

Looping over Strings and Lists

Looping over Strings and Lists

Loop over characters 1n a string.
for ch 1n "CS41".

nrint(ch)
Prints C, S, 4, and 1

Looping over Strings and Lists

Loop over characters 1n a string.

for ch 1n "(CS41":
nrint(ch)
Prints C, S, 4, and 1

Compare

String s = "(C541";

for (int 1 = 0; i < s.length(); ++1i) {

char ch = s.charAt(i);
System.out.println(ch);

}

Looping over Strings and Lists

Loop over characters 1n a string. Compare
: i String s = "(C541";
fOI’" Ch 10 "CS41" . for (int 1 = 0; 1 < s.length(); ++1i) 1
| char ch = s.charAt(1i);
prlnt(ch) System.out.println(ch);
}

Prints C, S, 4, and 1

Loop over elements of a list.
for number in [3, 1, 4, 1, 5]:

orint(number *xx 2, end="'|")

Looping over Strings and Lists

Loop over characters 1n a string. Compare
_] String s = "(CS41"%;
fOI’" Ch 10 "CS41"- for (int 1 = 0; 1 < s.length(); ++1i) 1
| char ch = s.charAt(1i);
prlnt(ch) System.out.println(ch);
I3

Prints C, S, 4, and 1

Loop over elements of a list.
for number in [3, 1, 4, 1, 5]:

orint(number *xx 2, end='|")
=> 9]|1|16|1|25]

range [terate over 3

gequence of numberg

range [terate over 3

gequence of numberg

range(3)
generates 0, 1, 2

range [terate over a

gequence of numberg

range(3)
generates 0, 1, 2

range(5, 10)
generates 5, 6, 7, 8, 9

range [terate over 3

gequence of numberg

range(3)
generates 0, 1, 2

range(5, 10)
generates 5, 6, 7, 8, 9

range(2, 12, 3)
generates 2, 5, 8, 11

range [terate over 3

gequence of numberg

range(3)
generates 0, 1, 2

range(5, 10)
generates 5, 6, 7, 8, 9

range(2, 12, 3)
generates 2, 5, 8, 11

range(-7, -30, -5)
generates -7, -12, -17, =22, =27

range [terate over 3

gequence of numberg

range(3)
generates 0, 1, 2

range(5, 10)
generates 5, 6, 7, 8, 9

range(2, 12, 3)
generates 2, 5, 8, 11

range(-7, -30, -5)
generates -7, -12, -17, =22, =27

range(stop) or range(start, stopl, stepl)

break and continue

break and continue

n range(2, 10):
N == .

(n, end=", ")
=> 2, 3, 4, 5,

break and continue

break breaks out of the
amallest encloging for or while loop

n range(2, 10):
N == .

(n, end=", ")
=> 2, 3, 4, 5,

break and continue

for n in range(2, 10):
1T n ==
break
orint(n, end=", ")
=> 2, 3, 4, 5,

for letter 1in "STELLAR':

1T letter in "LE":
continue

orint(letter, end='x")

=> SxkT*kAxRx

break breaks out of the
amallest encloging for or while loop

break and continue

n range(2, 10):
N == .

break breaks out of the
amallest encloging for or while loop

(n, end=", ")
=> 2’ 3’ 4’ 5’

letter "STELLAR": . . .
letter "y EN . continue continueg with

the next iteration of the loop

(letter, end="x")
=> SxT*AxRx

wh1lle loops

wh1lle loops

No additional surpriges here

wh1lle loops

Print powers of three below 10000
n =1
while n < 10000:

orint(n)

n k= 3

No additional surpriges here

FUNCTIONS

Dive into Python functiong Week 3

Writing Functions

The def keyword

defineg 4 function Oarameterg have no explicit types

fn_name(paraml, param2):
value = do_something()
va lue

return ig optional

if either return or it value are omitted,

implicitly returng None

Prime Numbper Generator

Prime Number Generator

Prime Number Generator

def is_prime(n):

Prime Number Generator

def is_prime(n):
1 range(2, n):

Prime Number Generator

def is_prime(n):
1 range(2, n):

n % 1 ==

Prime Number Generator

def is_prime(n):
1 range(2, n):
n % 1 ==

False

Prime Number Generator

def is_prime(n):
i range(2, n):
N % 1 ==
False
True

Prime Number Generator

def is_prime(n):

i range(2, n):
N % 1 ==
False
True

n = int(input("Enter a number: "))

Prime Number Generator

def is_prime(n):

i range(2, n):
N % 1 ==
False
True

n = int(input("Enter a number: "))
X range(2, n):

Prime Number Generator

def is_prime(n):
for 1 in range(2, n):
1T n%s 1==
return False
return True

n = int(input("Enter a number: "))
for x in range(2, n):
if is_prime(x):
print(x, "is prime")
else:
print(x, "is not prime")

More to See

More to See

Keyword Arguments
Variadic Argument Lists
Default Argument Values
Unpacking Arguments
Anonymaous Functions
First-Class Functions

Functional Programming

Next [1me

More Python Fundamentals!

Types and Objects
String Formatting
File 1/0

UJsing Scripts
Configuring Python 3
Lab

Appendix

Cltations

Examples in slides and interactive activities in this course

are drawn, with or without modification, from:

http://learnpythonthehardway.org/
http://learnxinyminutes.com/docs/python3/
https://docs.python.org/3/tutorial/index.html

http://learnpythonthehardway.org/
http://learnxinyminutes.com/docs/python3/
https://docs.python.org/3/tutorial/index.html

