
Welcome to Python!
CS 41: hap.py code

The Python Programming Language

Agenda

Welcome!

Agenda

Welcome!
Why Take CS41?

Agenda

Welcome!
Why Take CS41?
What is Python?

Agenda

Welcome!
Why Take CS41?
What is Python?
Logistics

Agenda

Welcome!
Why Take CS41?
What is Python?
Logistics
Python Crash Course

Agenda

Sam Redmond
sredmond@stanford.edu

Instructor

Course Helpers

Andrew Kondrich

Course Helpers

Norah Borus

Joy Hsu Shrey Gupta

Christina Ramsey

Divya Saini

Brahm Capoor Colin Kincaid Ali MalikEmily Cohen

Andrew Kondrich

Course Helpers

staff@stanfordpython.com

Norah Borus

Joy Hsu Shrey Gupta

Christina Ramsey

Divya Saini

Brahm Capoor Colin Kincaid Ali MalikEmily Cohen

mailto:staff@stanfordpython.com?subject=

You

You
Computer Science

Medicine

Music

Symbolic Systems

Mathematics

Electrical Engineering

Philosophy

Economics
English

HistoryManagement Science & Engineering

Business

Mathematical & Computational Science

Biomedical Informatics Statistics

Chinese
Education

Biomedical Computation

Mechanical Engineering

Aero/Astro

Linguistics
Bioengineering

Product Design

Finance

East Asian Studies

Environmental Engineering

Neuroscience

Psychology

Science, Technology and Society

International Relations

Law
Classics

Geophysics

Art History

Physics

Energy Resources Engineering

Public Policy

ChemistryAsian American Studies

Computational Biology

Why CS41?

Course Goals

1. Develop skills with Python fundamentals, both old and new

Course Goals

1. Develop skills with Python fundamentals, both old and new
2. Learn to recognize and write "good" Python

Course Goals

1. Develop skills with Python fundamentals, both old and new
2. Learn to recognize and write "good" Python
3. Gain experience with practical Python tasks

Course Goals

1. Develop skills with Python fundamentals, both old and new
2. Learn to recognize and write "good" Python
3. Gain experience with practical Python tasks
4. Understand Python's strengths (and weaknesses)

Course Goals

1. Develop skills with Python fundamentals, both old and new
2. Learn to recognize and write "good" Python
3. Gain experience with practical Python tasks
4. Understand Python's strengths (and weaknesses)

Course Goals

Questions

What is Python?

Questions

What is Python?
Why Python?

Questions

What is Python?
Why Python?
Will Python help me get a job?

Questions

History of Python

History of Python

Guido van Rossum
BDFL

Python 1: 1994

History of Python

Guido van Rossum
BDFL

Python 1: 1994

Python 2: 2000

History of Python

Guido van Rossum
BDFL

Python 1: 1994

Python 2: 2000

Python 3: 2008

History of Python

Guido van Rossum
BDFL

Python 1: 1994

Python 2: 2000

Python 3: 2008

History of Python

Specifically, we’re using
Python 3.7.2

Guido van Rossum
BDFL

Philosophy of Python

>>> import this

>>> import this

The Zen of Python, by Tim Peters

>>> import this

The Zen of Python, by Tim Peters
Beautiful is better than ugly.

>>> import this

The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.

>>> import this

The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.

>>> import this

The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.

>>> import this

The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.

>>> import this

The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.

>>> import this

The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.

>>> import this

Special cases aren't special enough to break the rules.

>>> import this

Special cases aren't special enough to break the rules.
Although practicality beats purity.

>>> import this

Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.

>>> import this

Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.

>>> import this

Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.

>>> import this

Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.

>>> import this

Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.

>>> import this

Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

>>> import this

Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.

>>> import this

Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.

>>> import this

Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.

>>> import this

Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

>>> import this

Programmers are more
important than programs

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

“Hello World” in Java

Yuck

#include <iostream>
using namespace std;

int main() {
 cout << "Hello World!" << endl;
}

“Hello World” in C++

Double Yuck

print("Hello world!")

“Hello World” in Python

Who Uses Python?

Python at Stanford

CEE 345: Network Analysis for Urban Systems
COMM 177P: Programming in Journalism
COMM 382: Big Data and Causal Inference
CS 375: Large-Scale Neural Network Modeling for Neuroscience
GENE 211: Genomics
LINGUIST 276: Quantitative Methods in Linguistics
MI 245: Computational Modeling of Microbial Communities
MS&E 448: Big Financial Data and Algorithmic Trading
PHYSICS 368: Computational Cosmology and Astrophysics
PSYCH 162: Brain Networks
STATS 155: Statistical Methods in Computational Genetics

Python at Stanford

Python in Business

Python in Business

Other Python Users

Other Python Users

5-Minute Break

Logistics

Logistics

Lectures Tue / Thu, 4:30-5:50, 380-380D

Logistics

Lectures Tue / Thu, 4:30-5:50, 380-380D
Units 2 CR/NC

Logistics

Lectures Tue / Thu, 4:30-5:50, 380-380D
Units 2 CR/NC
Website stanfordpython.com

Logistics

Lectures Tue / Thu, 4:30-5:50, 380-380D
Units 2 CR/NC
Website stanfordpython.com

Logistics

Bookmark it! We’ll post announcements,
lecture slides, and handouts online.

Lectures Tue / Thu, 4:30-5:50, 380-380D
Units 2 CR/NC
Website stanfordpython.com
Prereqs CS106B/X or equivalent

Logistics

Bookmark it! We’ll post announcements,
lecture slides, and handouts online.

Lectures Tue / Thu, 4:30-5:50, 380-380D
Units 2 CR/NC
Website stanfordpython.com
Prereqs CS106B/X or equivalent
Enrollment Cap 40 :(

Logistics

Bookmark it! We’ll post announcements,
lecture slides, and handouts online.

Logistics

Attendance Required. At most 2 unexcused absences.

Logistics

Attendance Required. At most 2 unexcused absences.

Logistics

iamhere.stanfordpython.com

http://iamhere.stanfordpython.com

Attendance Required. At most 2 unexcused absences.
Auditing Encouraged

Logistics

iamhere.stanfordpython.com

http://iamhere.stanfordpython.com

Attendance Required. At most 2 unexcused absences.
Auditing Encouraged
Waitlist Rolling

Logistics

iamhere.stanfordpython.com

http://iamhere.stanfordpython.com

Attendance Required. At most 2 unexcused absences.
Auditing Encouraged
Waitlist Rolling
Piazza Sign up!

Logistics

iamhere.stanfordpython.com

http://iamhere.stanfordpython.com

Logistics

Assignments 4 in total

Logistics

Assignments 4 in total
Grading Functionality and style, on a checkmark scale

Logistics

Assignments 4 in total
Grading Functionality and style, on a checkmark scale
Credit For both functionality and style, average a check

Logistics

Assignments 4 in total
Grading Functionality and style, on a checkmark scale
Credit For both functionality and style, average a check
Late Days Two 24-hour extensions

Logistics

Assignments 4 in total
Grading Functionality and style, on a checkmark scale
Credit For both functionality and style, average a check
Late Days Two 24-hour extensions
Honor Code Don’t cheat

Logistics

Assignments 4 in total
Grading Functionality and style, on a checkmark scale
Credit For both functionality and style, average a check
Late Days Two 24-hour extensions
Honor Code Don’t cheat

Logistics

More specifics can be found
on the Course Info handout

The Big Picture

The Road Ahead - The Python Language

Week 1 Python Fundamentals
Week 2 Data Structures
Week 3 Functions
Week 4 Functional Programming
Week 5 Object-Oriented Python

The Road Ahead - The Python Language

The Road Ahead - Python Tools

Week 6 Standard Library
Week 7 Third-Party Tools
Week 8 Ecosystem
Week 9 Advanced Topics
Week 10 Projects!

The Road Ahead - Python Tools

Let’s Get Started!

Interactive Interpreter
Comments
Variables and Types
Numbers and Booleans
Strings and Lists
Console I/O
Control Flow
Loops
Functions

Python Basics

sredmond$

Interactive Interpreter

sredmond$

Interactive Interpreter
python3

sredmond$

Interactive Interpreter

Python 3.7.2 (default, Dec 27 2018, 07:35:06)
[Clang 10.0.0 (clang-1000.11.45.5)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

python3

sredmond$

Interactive Interpreter

You can write Python code right here!

Python 3.7.2 (default, Dec 27 2018, 07:35:06)
[Clang 10.0.0 (clang-1000.11.45.5)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

python3

A Big Deal

Immediate gratification!

A Big Deal

Immediate gratification!
Sandboxed environment to experiment with Python

A Big Deal

Immediate gratification!
Sandboxed environment to experiment with Python
Shortens code-test-debug cycle to seconds

A Big Deal

Immediate gratification!
Sandboxed environment to experiment with Python
Shortens code-test-debug cycle to seconds

A Big Deal

The interactive interpreter is your new best friend

#

#Hashtag

Pound Sign

Number Sign

Sharp

Octothorpe

Comments

Single line comments start with a '#'

Comments

Single line comments start with a '#'

"""
Multiline comments can be written between
three "s and are often used as function
and module comments.
"""

Comments

Variables

Variables

x = 2

Variables
No semicolon!

x = 2
x * 7
=> 14

Variables
No semicolon!

x = 2
x * 7
=> 14

x = "Hello, I'm "

Variables
No semicolon!

x = 2
x * 7
=> 14

x = "Hello, I'm "
x + "Python!"
=> "Hello, I'm Python"

Variables
No semicolon!

x = 2
x * 7
=> 14

x = "Hello, I'm "
x + "Python!"
=> "Hello, I'm Python"

Variables

What happened here?!

No semicolon!

Where’s My Type?

In Java or C++

int x = 0;

Where’s My Type?

x = 0
In Python

Variables in Python are dynamically-typed: declared without an explicit type
However, objects have a type, so Python knows the type of a variable, even if you don't

Where’s My Type?

Variables in Python are dynamically-typed: declared without an explicit type
However, objects have a type, so Python knows the type of a variable, even if you don't

type(1) # => <class 'int'>
type("Hello") # => <class 'str'>
type(None) # => <class 'NoneType'>

Where’s My Type?

Variables in Python are dynamically-typed: declared without an explicit type
However, objects have a type, so Python knows the type of a variable, even if you don't

type(1) # => <class 'int'>
type("Hello") # => <class 'str'>
type(None) # => <class 'NoneType'>

Where’s My Type?

This is the same object
as the literal type int

Variables in Python are dynamically-typed: declared without an explicit type
However, objects have a type, so Python knows the type of a variable, even if you don't

type(1) # => <class 'int'>
type("Hello") # => <class 'str'>
type(None) # => <class 'NoneType'>

type(int) # => <class 'type'>
type(type(int))# => <class 'type'>

Where’s My Type?

This is the same object
as the literal type int

Python's dynamic type system
is fascinating! More on Wed.

Numbers and Math

Numbers and Math

3 # => 3 (int)
3.0 # => 3.0 (float)

Numbers and Math
Python has two numeric types

int and float

3 # => 3 (int)
3.0 # => 3.0 (float)

1 + 1 # => 2
8 - 1 # => 7
10 * 2 # => 20
5 / 2 # => 2.5
13 / 4 # => 3.25
9 / 3 # => 3.0
7 / 1.4 # => 5.0

Numbers and Math
Python has two numeric types

int and float

3 # => 3 (int)
3.0 # => 3.0 (float)

1 + 1 # => 2
8 - 1 # => 7
10 * 2 # => 20
5 / 2 # => 2.5
13 / 4 # => 3.25
9 / 3 # => 3.0
7 / 1.4 # => 5.0

7 // 3 # => 2 (integer division)
7 % 3 # => 1 (integer modulus)
2 ** 4 # => 16 (exponentiation)

Numbers and Math
Python has two numeric types

int and float

Booleans

True # => True
False # => False

Booleans
bool is a subtype of int, where
True == 1 and False == 0

True # => True
False # => False

not True # => False
True and False # => False
True or False # => True (short-circuits)

Booleans
bool is a subtype of int, where
True == 1 and False == 0

True # => True
False # => False

not True # => False
True and False # => False
True or False # => True (short-circuits)

1 == 1 # => True
2 * 3 == 5 # => False
1 != 1 # => False
2 * 3 != 5 # => True

Booleans
bool is a subtype of int, where
True == 1 and False == 0

True # => True
False # => False

not True # => False
True and False # => False
True or False # => True (short-circuits)

1 == 1 # => True
2 * 3 == 5 # => False
1 != 1 # => False
2 * 3 != 5 # => True

1 < 10 # => True
2 >= 0 # => True
1 < 2 < 3 # => True (1 < 2 and 2 < 3)
1 < 2 >= 3 # => False (1 < 2 and 2 >= 3)

Booleans
bool is a subtype of int, where
True == 1 and False == 0

Strings

Strings

Strings
No char in Python!

Both ' and " create string literals

greeting = 'Hello'
group = "wørld" # Unicode by default

Strings
No char in Python!

Both ' and " create string literals

greeting = 'Hello'
group = "wørld" # Unicode by default

greeting + ' ' + group + "!" # => 'Hello wørld!'

Strings
No char in Python!

Both ' and " create string literals

Indexing

Arthurs='
0 1 2 3 4 5 6

'

Indexing

Arthurs='
0 1 2 3 4 5 6

'

Indexing

Arthurs='
0 1 2 3 4 5 6

s[0] == 'A'
s[1] == 'r'
s[4] == 'u'
s[6] # Bad!

'

Negative Indexing

-6 -5 -4 -3 -2 -1 0
Arthurs='
0 1 2 3 4 5 6

'

Negative Indexing

s[-1] == 'r'
s[-2] == 'u'
s[-4] == 't'
s[-6] == 'A'

-6 -5 -4 -3 -2 -1 0
Arthurs='
0 1 2 3 4 5 6

'

Arthur

Slicing

s='
0 1 2 3 4 5 6

'

Arthur

Slicing

s='
0 1 2 3 4 5 6

'

Arthur

Slicing

s[0:2] == 'Ar'

s='
0 1 2 3 4 5 6

'

Arthur

Slicing

s[0:2] == 'Ar'

s='
0 1 2 3 4 5 6

'

Arthur

Slicing

s[0:2] == 'Ar'
s[3:6] == 'hur'

s='
0 1 2 3 4 5 6

'

Arthur

Slicing

s[0:2] == 'Ar'
s[3:6] == 'hur'
s[1:4] == 'rth'

s='
0 1 2 3 4 5 6

'

Arthur

Strings

s[:2] == 'Ar'
s[3:] == 'hur'

Implicitly starts at 0 Implicitly ends at the end

s='
0 1 2 3 4 5 6

'

Arthur

Strings

s[:2] == 'Ar'
s[3:] == 'hur'

Implicitly starts at 0 Implicitly ends at the end

s='
0 1 2 3 4 5 6

'

Arthur

Strings

s[:2] == 'Ar'
s[3:] == 'hur'

Implicitly starts at 0 Implicitly ends at the end

s='
0 1 2 3 4 5 6

'

Strings

Arthurs='
0 1 2 3 4 5 6

'

Strings

s[1:5:2] == 'rh'
s[4::-2] == 'utA'

Can also pass a step size

Arthurs='
0 1 2 3 4 5 6

'

Strings

s[1:5:2] == 'rh'
s[4::-2] == 'utA'
 s[::-1] == 'ruhtrA'

One way to
reverse a string

Can also pass a step size

Arthurs='
0 1 2 3 4 5 6

'

Converting Values

str(42) # => "42"

Converting Values
All objects have a

string representation

str(42) # => "42"
int("42") # => 42

Converting Values
All objects have a

string representation

str(42) # => "42"
int("42") # => 42
float("2.5") # => 2.5

Converting Values
All objects have a

string representation

str(42) # => "42"
int("42") # => 42
float("2.5") # => 2.5
float("1") # => 1.0

Converting Values
All objects have a

string representation

Lists

Dive into Python data structures Week 2!

easy_as = [1,2,3]

Lists

easy_as = [1,2,3]

Lists

Square brackets delimit lists

easy_as = [1,2,3]

Lists

Square brackets delimit lists

Commas separate elements

Versatile
Incredibly common

≈ ArrayList / Vector

Lists

[]

Basic Lists

Create a new list
empty = []
letters = ['a', 'b', 'c', 'd']
numbers = [2, 3, 5]

Basic Lists

Create a new list
empty = []
letters = ['a', 'b', 'c', 'd']
numbers = [2, 3, 5]

Lists can contain elements of different types
mixed = [4, 5, "seconds"]

Basic Lists

Create a new list
empty = []
letters = ['a', 'b', 'c', 'd']
numbers = [2, 3, 5]

Lists can contain elements of different types
mixed = [4, 5, "seconds"]

Append elements to the end of a list
numbers.append(7) # numbers == [2, 3, 5, 7]
numbers.append(11) # numbers == [2, 3, 5, 7, 11]

Basic Lists

Inspecting List Elements

letters = ['a', 'b', 'c', 'd']
numbers = [2, 3, 5, 7, 11]

Inspecting List Elements

letters = ['a', 'b', 'c', 'd']
numbers = [2, 3, 5, 7, 11]

Access elements at a particular index
numbers[0] # => 2
numbers[-1] # => 11

Inspecting List Elements

letters = ['a', 'b', 'c', 'd']
numbers = [2, 3, 5, 7, 11]

Access elements at a particular index
numbers[0] # => 2
numbers[-1] # => 11

You can also slice lists - the same rules apply
letters[:3] # => ['a', 'b', 'c']
numbers[1:-1] # => [3, 5, 7]

Inspecting List Elements

Nested Lists

Lists really can contain anything - even other lists!
combo = [letters, numbers]
combo # => [['a', 'b', 'c', 'd'], [2, 3, 5, 7, 11]]

Nested Lists

Lists really can contain anything - even other lists!
combo = [letters, numbers]
combo # => [['a', 'b', 'c', 'd'], [2, 3, 5, 7, 11]]
combo[0] # => ['a', 'b', 'c', 'd']

Nested Lists

Lists really can contain anything - even other lists!
combo = [letters, numbers]
combo # => [['a', 'b', 'c', 'd'], [2, 3, 5, 7, 11]]
combo[0] # => ['a', 'b', 'c', 'd']
combo[0][1] # => 'b'

Nested Lists

Lists really can contain anything - even other lists!
combo = [letters, numbers]
combo # => [['a', 'b', 'c', 'd'], [2, 3, 5, 7, 11]]
combo[0] # => ['a', 'b', 'c', 'd']
combo[0][1] # => 'b'
combo[1][2:] # => [5, 7, 11]

Nested Lists

General Queries

Length (len)
len([]) # => 0
len("python") # => 6
len([4, 5, "seconds"]) # => 3

General Queries

Length (len)
len([]) # => 0
len("python") # => 6
len([4, 5, "seconds"]) # => 3

Membership (in)
0 in [] # => False

General Queries

Length (len)
len([]) # => 0
len("python") # => 6
len([4, 5, "seconds"]) # => 3

Membership (in)
0 in [] # => False
'y' in "python" # => True

General Queries

Length (len)
len([]) # => 0
len("python") # => 6
len([4, 5, "seconds"]) # => 3

Membership (in)
0 in [] # => False
'y' in "python" # => True
"minutes" in [4, 5, "seconds"] # => False

General Queries

Console I/O

Console I/O

Read a string from the user
>>> name = input("What is your name? ")

Console I/O
input prompts the user for input

Read a string from the user
>>> name = input("What is your name? ")
What is your name?

Console I/O
input prompts the user for input

Read a string from the user
>>> name = input("What is your name? ")
What is your name?

Console I/O
input prompts the user for input

Sam

Read a string from the user
>>> name = input("What is your name? ")
What is your name?

>>> print("I'm Python. Nice to meet you,", name)
I'm Python. Nice to meet you, Sam

Console I/O
input prompts the user for input

Sam

Read a string from the user
>>> name = input("What is your name? ")
What is your name?

>>> print("I'm Python. Nice to meet you,", name)
I'm Python. Nice to meet you, Sam

Console I/O
input prompts the user for input

Sam

print can be used in many different ways!

Control Flow

if the_world_is_flat:
 print("Don't fall off!")

If Statements

if the_world_is_flat:
 print("Don't fall off!")

If Statements

No parentheses needed

if the_world_is_flat:
 print("Don't fall off!")

If Statements

No parentheses needed Colon

No curly braces!

if the_world_is_flat:
 print("Don't fall off!")

If Statements

No parentheses needed Colon

No curly braces!

Use 4 spaces
for indentation

Zen of Python
Readability counts

4 Spaces?! No Braces?!

Can be configured in most development environments

if some_condition:
 print("Some condition holds")
elif other_condition:
 print("Other condition holds")
else:
 print("Neither condition holds")

elif and else

zero or more elifs

else is optional

Python has no switch statement,
opting for if/elif/else chains

Palindrome? Spelled the same
backwards and forwards

Is a user-submitted word a palindrome?
word = input("Please enter a word: ")
reversed_word = word[::-1]

Palindrome? Spelled the same
backwards and forwards

Is a user-submitted word a palindrome?
word = input("Please enter a word: ")
reversed_word = word[::-1]

Palindrome?

Pause: How did this work again?

Spelled the same
backwards and forwards

Is a user-submitted word a palindrome?
word = input("Please enter a word: ")
reversed_word = word[::-1]
if word == reversed_word:
 print("Hooray! You entered a palindrome")

Palindrome?

Pause: How did this work again?

Spelled the same
backwards and forwards

Is a user-submitted word a palindrome?
word = input("Please enter a word: ")
reversed_word = word[::-1]
if word == reversed_word:
 print("Hooray! You entered a palindrome")
else:
 print("You did not enter a palindrome")

Palindrome?

Pause: How did this work again?

Spelled the same
backwards and forwards

Truthy and Falsy

'Falsy' values
bool(None) # => False
bool(False) # => False
bool(0) # => False
bool(0.0) # => False
bool('') # => False

Truthy and Falsy

'Falsy' values
bool(None) # => False
bool(False) # => False
bool(0) # => False
bool(0.0) # => False
bool('') # => False

Empty data structures are 'falsy'
bool([]) # => False

Truthy and Falsy

'Falsy' values
bool(None) # => False
bool(False) # => False
bool(0) # => False
bool(0.0) # => False
bool('') # => False

Empty data structures are 'falsy'
bool([]) # => False

Everything else is 'truthy'
bool(41) # => True
bool('abc') # => True
bool([1, 'a', []]) # => True

Truthy and Falsy

'Falsy' values
bool(None) # => False
bool(False) # => False
bool(0) # => False
bool(0.0) # => False
bool('') # => False

Empty data structures are 'falsy'
bool([]) # => False

Everything else is 'truthy'
bool(41) # => True
bool('abc') # => True
bool([1, 'a', []]) # => True

bool([False]) # => True
bool(int) # => True

Truthy and Falsy

Checking for Truthiness with Steven Colbert

How should we check for an empty list?
data = []

Checking for Truthiness with Steven Colbert

How should we check for an empty list?
data = []
…

Checking for Truthiness with Steven Colbert

How should we check for an empty list?
data = []
…
if data:
 process(data)

Checking for Truthiness with Steven Colbert

How should we check for an empty list?
data = []
…
if data:
 process(data)
else:
 print("There's no data!")

Checking for Truthiness with Steven Colbert

How should we check for an empty list?
data = []
…
if data:
 process(data)
else:
 print("There's no data!")

Checking for Truthiness with Steven Colbert

You should almost never test
if expr == True

Loops

for item in iterable:
 process(item)

For Loops

for item in iterable:
 process(item)

For Loops

Loop explicitly over data

for item in iterable:
 process(item)

For Loops

Strings, lists, etc.
Loop explicitly over data

for item in iterable:
 process(item)

For Loops

Strings, lists, etc.

No loop counter!

Loop explicitly over data

Looping over Strings and Lists

Loop over characters in a string.
for ch in "CS41":
 print(ch)
Prints C, S, 4, and 1

Looping over Strings and Lists

Loop over characters in a string.
for ch in "CS41":
 print(ch)
Prints C, S, 4, and 1

Looping over Strings and Lists

String s = "CS41";
for (int i = 0; i < s.length(); ++i) {
 char ch = s.charAt(i);
 System.out.println(ch);
}

Compare

Loop over characters in a string.
for ch in "CS41":
 print(ch)
Prints C, S, 4, and 1

Loop over elements of a list.
for number in [3, 1, 4, 1, 5]:
 print(number ** 2, end='|')

Looping over Strings and Lists

String s = "CS41";
for (int i = 0; i < s.length(); ++i) {
 char ch = s.charAt(i);
 System.out.println(ch);
}

Compare

Loop over characters in a string.
for ch in "CS41":
 print(ch)
Prints C, S, 4, and 1

Loop over elements of a list.
for number in [3, 1, 4, 1, 5]:
 print(number ** 2, end='|')
=> 9|1|16|1|25|

Looping over Strings and Lists

String s = "CS41";
for (int i = 0; i < s.length(); ++i) {
 char ch = s.charAt(i);
 System.out.println(ch);
}

Compare

range Iterate over a
sequence of numbers

range(3)
generates 0, 1, 2

range Iterate over a
sequence of numbers

range(3)
generates 0, 1, 2

range(5, 10)
generates 5, 6, 7, 8, 9

range Iterate over a
sequence of numbers

range(3)
generates 0, 1, 2

range(5, 10)
generates 5, 6, 7, 8, 9

range(2, 12, 3)
generates 2, 5, 8, 11

range Iterate over a
sequence of numbers

range(3)
generates 0, 1, 2

range(5, 10)
generates 5, 6, 7, 8, 9

range(2, 12, 3)
generates 2, 5, 8, 11

range(-7, -30, -5)
generates -7, -12, -17, -22, -27

range Iterate over a
sequence of numbers

range(3)
generates 0, 1, 2

range(5, 10)
generates 5, 6, 7, 8, 9

range(2, 12, 3)
generates 2, 5, 8, 11

range(-7, -30, -5)
generates -7, -12, -17, -22, -27

range Iterate over a
sequence of numbers

range(stop) or range(start, stop[, step])

break and continue

for n in range(2, 10):
 if n == 6:
 break
 print(n, end=', ')
=> 2, 3, 4, 5,

break and continue

for n in range(2, 10):
 if n == 6:
 break
 print(n, end=', ')
=> 2, 3, 4, 5,

break and continue

break breaks out of the
smallest enclosing for or while loop

for n in range(2, 10):
 if n == 6:
 break
 print(n, end=', ')
=> 2, 3, 4, 5,

for letter in "STELLAR":
 if letter in "LE":
 continue
 print(letter, end='*')
=> S*T*A*R*

break and continue

break breaks out of the
smallest enclosing for or while loop

for n in range(2, 10):
 if n == 6:
 break
 print(n, end=', ')
=> 2, 3, 4, 5,

for letter in "STELLAR":
 if letter in "LE":
 continue
 print(letter, end='*')
=> S*T*A*R*

break and continue

break breaks out of the
smallest enclosing for or while loop

continue continues with
the next iteration of the loop

while loops

while loops No additional surprises here

Print powers of three below 10000
n = 1
while n < 10000:
 print(n)
 n *= 3

while loops No additional surprises here

Functions

Dive into Python functions Week 3

def fn_name(param1, param2):
 value = do_something()
 return value

Writing Functions
The def keyword
defines a function Parameters have no explicit types

return is optional
if either return or its value are omitted,

implicitly returns None

Prime Number Generator

Prime Number Generator

def is_prime(n):

Prime Number Generator

def is_prime(n):
 for i in range(2, n):

Prime Number Generator

def is_prime(n):
 for i in range(2, n):
 if n % i == 0:

Prime Number Generator

def is_prime(n):
 for i in range(2, n):
 if n % i == 0:
 return False

Prime Number Generator

def is_prime(n):
 for i in range(2, n):
 if n % i == 0:
 return False
 return True

Prime Number Generator

def is_prime(n):
 for i in range(2, n):
 if n % i == 0:
 return False
 return True

n = int(input("Enter a number: "))

Prime Number Generator

def is_prime(n):
 for i in range(2, n):
 if n % i == 0:
 return False
 return True

n = int(input("Enter a number: "))
for x in range(2, n):

Prime Number Generator

def is_prime(n):
 for i in range(2, n):
 if n % i == 0:
 return False
 return True

n = int(input("Enter a number: "))
for x in range(2, n):
 if is_prime(x):
 print(x, "is prime")
 else:
 print(x, "is not prime")

Prime Number Generator

More to See

More to See

Default Argument Values

Keyword Arguments
Variadic Argument Lists

Unpacking Arguments
Anonymous Functions

First-Class Functions
Functional Programming

Next Time

Types and Objects
String Formatting
File I/O
Using Scripts
Configuring Python 3
Lab!

More Python Fundamentals!

Appendix

Examples in slides and interactive activities in this course
are drawn, with or without modification, from:
http://learnpythonthehardway.org/
http://learnxinyminutes.com/docs/python3/
https://docs.python.org/3/tutorial/index.html

Citations

http://learnpythonthehardway.org/
http://learnxinyminutes.com/docs/python3/
https://docs.python.org/3/tutorial/index.html

