
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
1

Chapter 2 Elementary Programming

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
2

Motivations

Suppose, for example, that you need to take out a
student loan. Given the loan amount, loan term,
and annual interest rate, can you write a program to
compute the monthly payment and total payment?
This chapter shows you how to write programs like
this. Along the way, you learn the basic steps that
go into analyzing a problem, designing a solution,
and implementing the solution by creating a
program.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
3

Objectives
To write programs that perform simple computations (§2.2).

To obtain input from a program’s user by using the input function
(§2.3).

To use identifiers to name variables (§2.4).

To assign data to variables (§2.5).

To define named constants (§2.6).

To use the operators +, -, *, /, //, %, and ** (§2.7).

To write and evaluate numeric expressions (§2.8).

To use augmented assignment operators to simplify coding (§2.9).

To perform numeric type conversion and rounding with the int and
round functions (§2.10).

To obtain the current system time by using time.time() (§2.11).

To describe the software development process and apply it to
develop the loan payment program (§2.12).

To compute and display the distance between two points (§2.13).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
4

Introducing Programming with an

Example

Listing 2.1 Computing the Area of a

Circle

This program computes the area of the

circle.

ComputeArea

Run

IMPORTANT NOTE:

(1) To enable the buttons, you must download the entire slide
file slide.zip and unzip the files into a directory (e.g.,
c:\slide). (2) You must have installed Python and set python
bin directory in the environment path. (3) If you are using
Office 2010, check PowerPoint2010.doc located in the
same folder with this ppt file.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
5

Trace a Program Execution

Assign a radius

radius = 20 # radius is now 20

Compute area

area = radius * radius * 3.14159

Display results

print("The area for the circle of radius " +

str(radius) + " is " + str(area))

20radius

Assign 20 to

radius

animation

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
6

Trace a Program Execution

Assign a radius

radius = 20 # radius is now 20

Compute area

area = radius * radius * 3.14159

Display results

print("The area for the circle of radius“,

radius, " is "area)

20radius

Assign result to

area

animation

1256.636area

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
7

Trace a Program Execution

Assign a radius

radius = 20 # radius is now 20

Compute area

area = radius * radius * 3.14159

Display results

print("The area for the circle of radius",

radius, "is", area)

20radius

print a message to

the console

animation

1256.636area

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
8

Reading Input from the Console

1. Use the input function

variable = input("Enter a string: ")

2. Use the eval function

var = eval(stringVariable)

eval("51 + (54 * (3 + 2))") returns 321.

ComputeAreaWithConsoleInput

Run

ComputeAverage

Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Comments in Python

• Anything after a # is ignored by Python

• Why comment?

• Describe what is going to happen in a sequence

of code

• Document who wrote the code or other ancillary

information

• Turn off a line of code - perhaps temporarily

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
10

Identifiers/Variable Names

An identifier is a sequence of characters that
consists of letters, digits, underscores (_), and
asterisk (*).

An identifier must start with a letter or an
underscore. It cannot start with a digit.

An identifier cannot be a reserved word. (See
Appendix A, "Python Keywords," for a list of
reserved words.) Reserved words have special
meanings in Python, which we will later.

An identifier can be of any length.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Python Variable Name Rules

• Must start with a letter or underscore _

• Must consist of letters and numbers and

underscores

• Case Sensitive

• Good: spam eggs spam23 _speed

• Bad: 23spam #sign var.12

• Different: spam Spam SPAM

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Reserved Words

• You can not use reserved words as variable

names / identifiers

and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass yield
def finally in print

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Variables
A variable is a named place in the memory where a
programmer can store data and later retrieve the
data using the variable “name”

Programmers get to choose the names of the
variables

You can change the contents of a variable in a later
statement

12.2x

14y

x = 12.2
y = 14

100

x = 100

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
14

Variables

Compute the first area

radius = 1.0

area = radius * radius * 3.14159

print("The area is ", area,

" for radius ", radius)

Compute the second area

radius = 2.0

area = radius * radius * 3.14159

print("The area is ", area,

" for radius ", radius)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
15

Expression

x = 1 # Assign 1 to variable x

radius = 1.0 # Assign 1.0 to variable radius

Assign the value of the expression to x

x = 5 * (3 / 2) + 3 * 2

x = y + 1 # Assign the addition of y and 1 to x

area = radius * radius * 3.14159 # Compute area

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Assignment Statements

• We assign a value to a variable using the

assignment statement (=)

• An assignment statement consists of an

expression on the right hand side and a

variable to store the result

x = 3.9 * x * (1 - x)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

x = 3.9 * x * (1 - x)

0.6x

Right side is an expression. Once
expression is evaluated, the result
is placed in (assigned to) x.

0.6 0.6

0.4

0.93

A variable is a memory location
used to store a value (0.6).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

x = 3.9 * x * (1 - x)

0.6 0.93x

Right side is an expression. Once
expression is evaluated, the result
is placed in (assigned to) the
variable on the left side (i.e. x).

0.93

A variable is a memory location
used to store a value. The value
stored in a variable can be updated
by replacing the old value (0.6)
with a new value (0.93).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
19

Assignment Statements

x = 1 # Assign 1 to x

x = x + 1

i = j = k = 1

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
20

Simultaneous Assignment

var1, var2, ..., varn = exp1, exp2, ..., expn

x, y = y, x # Swap x with y

ComputeAverageWithSimultaneousAssignment

Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
21

Named Constants

The value of a variable may change during the

execution of a program, but a named constant or

simply constant represents permanent data that

never changes. Python does not have a special

syntax for naming constants. You can simply

create a variable to denote a constant. To

distinguish a constant from a variable, use all

uppercase letters to name a constant.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
22

Numerical Data Types

integer: e.g., 3, 4

float: e.g., 3.0, 4.0

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Several Types of Numbers

• Numbers have two main

types

• Integers are whole numbers: -

14, -2, 0, 1, 100, 401233

• Floating Point Numbers have

decimal parts: -2.5 , 0.0,

98.6, 14.0

• There are other number

types - they are variations

on float and integer

>>> xx = 1
>>> type (xx)
<class 'int'>
>>> temp = 98.6
>>> type(temp)
< class 'float'>
>>> type(1)
< class 'int'>
>>> type(1.0)
< class 'float'>
>>>

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
24

Numeric Operators

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 – 0.1 33.9

* Multiplication 300 * 30 9000

/ Float Division 1 / 2 0.5

// Integer Division 1 // 2 0

** Exponentiation 4 ** 0.5 2.0

% Remainder 20 % 3 2

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
25

The % Operator

12 4

 3

12

 0

 7 3

 2

 6

 1

26 8

 3

24

 2 Remainder

Quotient

20 13

 1

13

 7

Dividend Divisor

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
26

Remainder Operator

Remainder is very useful in programming. For example, an
even number % 2 is always 0 and an odd number % 2 is always
1. So you can use this property to determine whether a number

is even or odd. Suppose today is Saturday and you and your
friends are going to meet in 10 days. What day is in 10
days? You can find that day is Tuesday using the following
expression:

 Saturday is the 6th day in a week

A week has 7 days

After 10 days

The 2nd day in a week is Tuesday
(6 + 10) % 7 is 2

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
27

Problem: Displaying Time

Write a program that obtains hours and

minutes from seconds.

DisplayTime Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
28

Overflow

When a variable is assigned a value that is too
large (in size) to be stored, it causes overflow.
For example, executing the following
statement causes overflow.

>>>245.0 ** 1000

OverflowError: 'Result too large'

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
29

Underflow

When a floating-point number is too small (i.e., too

close to zero) to be stored, it causes underflow.

Python approximates it to zero. So normally you

should not be concerned with underflow.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
30

Scientific Notation

- Floating-point literals can also be specified in

scientific notation, for example,

- 1.23456e+2, same as 1.23456e2, is

equivalent to 123.456, and

- 1.23456e-2 is equivalent to 0.0123456.

E (or e) represents an exponent and it can be

either in lowercase or uppercase.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
31

Arithmetic Expressions

)
94

(9
))(5(10

5

43

y

x

xx

cbayx +
++

++−
−

+

is translated to

(3+4*x)/5 – 10*(y-5)*(a+b+c)/x + 9*(4/x + (9+x)/y)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Order of Evaluation

When we string operators together - Python

must know which one to do first

This is called “operator precedence”

Which operator “takes precedence” over

the others

x = 1 + 2 * 3 - 4 / 5 ** 6

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Operator Precedence Rules
• Highest precedence rule to

lowest precedence rule

• Parenthesis are always
respected

• Exponentiation (raise to a
power)

• Multiplication, Division, and
Remainder

• Addition and Subtraction

• Left to right

Parenthesis
Power
Multiplication
Addition
Left to Right

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Parenthesis
Power
Multiplication
Addition
Left to Right

1 + 2 ** 3 / 4 * 5

1 + 8 / 4 * 5

1 + 2 * 5

1 + 10

11

>>> x = 1 + 2 ** 3 / 4 * 5
>>> print(x)
11
>>>

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Parenthesis
Power
Multiplication
Addition
Left to Right

>>> x = 1 + 2 ** 3 / 4 * 5
>>> print x
11
>>>

1 + 2 ** 3 / 4 * 5

1 + 8 / 4 * 5

1 + 2 * 5

1 + 10

11

Note 8/4 goes before 4*5
because of the left-right
rule.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Operator Precedence

• Remember the rules top to bottom

• When writing code - use
parenthesis

• When writing code - keep
mathematical expressions simple
enough that they are easy to
understand

• Break long series of mathematical
operations up to make them more
clear

Parenthesis
Power
Multiplication
Addition
Left to Right

Exam Question: x = 1 + 2 * 3 - 4 / 5

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
37

How to Evaluate an Expression

Though Python has its own way to evaluate an

expression behind the scene, the result of a Python

expression and its corresponding arithmetic expression

are the same. Therefore, you can safely apply the

arithmetic rule for evaluating a Python expression.

3 + 4 * 4 + 5 * (4 + 3) - 1

3 + 4 * 4 + 5 * 7 – 1

3 + 16 + 5 * 7 – 1

3 + 16 + 35 – 1

19 + 35 – 1

 54 - 1

 53

 (1) inside parentheses first

 (2) multiplication

 (3) multiplication

 (4) addition

 (6) subtraction

 (5) addition

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Mixing Integer and Floating

• When you perform
an operation where
one operand is an
integer and the other
operand is a floating
point the result is a
floating point

• The integer is
converted to a
floating point before
the operation

>>> print (1 + 2 * 3 / 4.0 – 5)
-2.5
>>>

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
39

Augmented Assignment Operators

Operator Example Equivalent

+= i += 8 i = i + 8

-= f -= 8.0 f = f - 8.0

*= i *= 8 i = i * 8

/= i /= 8 i = i / 8

%= i %= 8 i = i % 8

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
40

Type Conversion and Rounding

datatype(value)

i.e., int(4.5) => 4

float(4) => 4.0

str(4) => “4”

round(4.6) => 5

round(4.5) => 4

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
41

Problem: Keeping Two Digits After

Decimal Points

Write a program that displays the sales tax with two
digits after the decimal point.

SalesTax Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
42

Problem: Displaying Current Time
Write a program that displays current time in GMT in the

format hour:minute:second such as 1:45:19.

The time.time() function returns the current time in seconds

with millisecond precision since the midnight, January 1,

1970 GMT. (1970 was the year when the Unix operating

system was formally introduced.) You can use this function

to obtain the current time, and then compute the current

second, minute, and hour as follows.

ShowCurrentTime

Run

Elapsed

time

Unix epoch

01-01-1970

00:00:00 GMT

Current time

Time

time.time()

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
43

Software Development Process

Requirement

Specification

System

Analysis

System

Design

Testing

Implementation

Maintenance

Deployment

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
44

Requirement Specification

Requirement

Specification

System

Analysis

System

Design

Testing

Implementation

Maintenance

Deployment

A formal process that seeks to understand

the problem and document in detail what

the software system needs to do. This

phase involves close interaction between

users and designers.

Most of the examples in this book are simple,

and their requirements are clearly stated. In

the real world, however, problems are not

well defined. You need to study a problem

carefully to identify its requirements.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
45

System Analysis

Requirement

Specification

System

Analysis

System

Design

Testing

Implementation

Maintenance

Deployment

Seeks to analyze the business

process in terms of data flow, and

to identify the system’s input and

output.

Part of the analysis entails modeling

the system’s behavior. The model is

intended to capture the essential

elements of the system and to define

services to the system.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
46

System Design

Requirement

Specification

System

Analysis

System

Design

Testing

Implementation

Maintenance

Deployment

The process of designing the

system’s components.

This phase involves the use of many levels

of abstraction to decompose the problem into

manageable components, identify classes and

interfaces, and establish relationships among

the classes and interfaces.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
47

IPO

Requirement

Specification

System

Analysis

System

Design

Input, Process, Output

Testing

Implementation

Maintenance

Deployment

The essence of system analysis and design is input,

process, and output. This is called IPO.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
48

Implementation

Requirement

Specification

System

Analysis

System

Design

Testing

Implementation

Maintenance

Deployment

The process of translating the

system design into programs.

Separate programs are written for

each component and put to work

together.

This phase requires the use of a

programming language like Python.

The implementation involves

coding, testing, and debugging.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
49

Testing

Requirement

Specification

System

Analysis

System

Design

Testing

Implementation

Maintenance

Deployment

Ensures that the code meets the

requirements specification and

weeds out bugs.

An independent team of software

engineers not involved in the design

and implementation of the project

usually conducts such testing.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
50

Deployment

Requirement

Specification

System

Analysis

System

Design

Testing

Implementation

Maintenance

Deployment

Deployment makes the project

available for use.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
51

Maintenance

Requirement

Specification

System

Analysis

System

Design

Testing

Implementation

Maintenance

Deployment

Maintenance is concerned with

changing and improving the

product.

A software product must continue to

perform and improve in a changing

environment. This requires periodic

upgrades of the product to fix newly

discovered bugs and incorporate changes.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
52

Problem:

Computing Loan Payments

ComputeLoan Run

This program lets the user enter the interest

rate, number of years, and loan amount, and

computes monthly payment and total

payment.

12)1(
11

+
−

=

arsnumberOfYeerestRatemonthlyInt

erestRatemonthlyIntloanAmount
mentmonthlyPay

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
53

Case Study: Computing Distances

ComputeDistance Run

This program prompts the user to enter two

points, computes their distance, and displays

the points.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
54

Case Study: Computing Distances

ComputeDistanceGraphics Run

This program prompts the user to enter two

points, computes their distance, and displays

the points and their distances in graphics.

