Chapter 4 Selections

Motivations

If you assigned a negative value for radius in Listing 2.1, ComputeArea.py, the program would print an invalid result. If the radius is negative, you don't want the program to compute the area. How can you deal with this situation?

Objectives

■ To write Boolean expressions by using comparison operators (§4.2).
\square To generate random numbers by using the random.randint(\mathbf{a}, \mathbf{b}) or random.random() functions (§4.3).

- To program with Boolean expressions (AdditionQuiz) (§4.3).
\square To implement selection control by using one-way if statements (§4.4)
\square To program with one-way if statements (GuessBirthday) (§4.5).
■ To implement selection control by using two-way if .. else statements (§4.6).
■ To implement selection control with nested if ... elif ... else statements (§4.7).
\square To avoid common errors in if statements (§4.8).
\square To program with selection statements (§4.9-4.10).
\square To combine conditions by using logical operators (and, or, and not) (§4.11).
\square To use selection statements with combined conditions (Leap Year, Lottery) (§§4.12-4.13).
\square To write expressions that use the conditional expressions (§4.14).
\square To understand the rules governing operator precedence and associativity (§4.15).

Boolean Data Types

Often in a program you need to compare two values, such as whether i is greater than j . There are six comparison operators (also known as relational operators) that can be used to compare two values. The result of the comparison is a Boolean value: True or False.

$$
b=(1>2)
$$

Comparison Operators

Operator Name
$<\quad$ less than
$<=\quad$ less than or equal to
$>$
greater than
$>=\quad$ greater than or equal to
$==\quad$ equal to
$!=\quad$ not equal to

Comparison Operators

$$
\begin{aligned}
& x=5 \\
& y=8 \\
& \text { print(" } \mathrm{x}=\mathrm{=} \mathrm{y}: \text { ", } \mathrm{x}=\mathrm{=} \mathrm{y} \text {) } \\
& \text { print("x != y:", x != y) } \\
& \operatorname{print}(" \mathrm{x}<\mathrm{y}: \text { ", } \mathrm{x}<\mathrm{y}) \\
& \text { print("x > y:", x > y) } \\
& \text { print(" } \mathrm{x}<=\mathrm{y}: \text { ", } \mathrm{x}<=\mathrm{y} \text {) } \\
& \operatorname{print}(" \mathrm{x}>=\mathrm{y}: \text { ", } \mathrm{x}>=\mathrm{y})
\end{aligned}
$$

Output
$\mathrm{x}==\mathrm{y}$: False
$\mathrm{x}!=\mathrm{y}$: True
$x<y$: True
$x>y$: False
$\mathrm{x}<=\mathrm{y}$: True
$x>=y$: False

Problem: A Simple Math Learning Tool

This example creates a program to let a first grader practice additions. The program randomly generates two single-digit integers numberl and number2 and displays a question such as "What is $7+9$?" to the student. After the student types the answer, the program displays a message to indicate whether the answer is true or false.

AdditionQuiz

 Run
if Statements

- Python has several types of selection statements:
- one-way if statements,
- two-way if-clse statements,
- nested if statements,
- multi-way if-elif-else statements and
- conditional expressions

One-way if Statements

if boolean-expression: statement(s)
if radius $>=0$:

$$
\text { area }=\text { radius * radius * } 3.14159
$$

print("The area for the circle of radius", radius, "is", area)

A one-way if statement executes the statements if the condition is true.

Note

if i > 0:
print("i is positive")

```
if i > 0: 
if i > 0: 
```

(b) Correct

- The statement(s) must be indented at least one space to the right of the if keyword and each statement must be indented using the same number of spaces.
- For consistency, we indent it four spaces in this book.

Simple if Demo

Write a program that prompts the user to enter an integer. If the number is a multiple of 5 , print HiFive. If the number is divisible by 2, print HiEven.

Problem: Guessing Birthday

\square You can find out the date of the month when your friend was born by asking five questions.
$\square \quad$ Each question asks whether the day is in one of the five sets of numbers.
\square The birthday is the sum of the first numbers in the sets where the date appears.
\square The program can guess your birth date. Run to see how it works.

Run

Mathematics Basis for the Game

19 is 10011 in binary. 7 is 111 in binary. 23 is 11101 in binary

Dximal	Bimy	$b_{5} 0000$		10000
1	axol	$b_{4} 000$		1000
2	0×10	$b_{3} 00$	1000	100
3	00011	${ }^{2} 0$	10	10
\cdots	1001	$\begin{array}{r}\text { b } \\ +\quad{ }_{1} \\ \hline\end{array}$	+ 1	+ 1
.-.			10011	11111
31	11111		19	31

The Two-way if Statement

if boolean-expression:
statement (s)-for-the-true-case
else:
statement(s)-for-the-false-case

if. . .else Example

if radius $>=0$:
area $=$ radius $*$ radius $*$ math.pi print("The area for the circle of radius", radius, "is", area) else: print("Negative input")

Problem: An Improved Math Learning Tool

 This example creates a program to teach a first grade child how to learn subtractions. The program randomly generates two singledigit integers numberl and number2 with number1 > number2 and displays a question such as "What is $9-2$?" to the student. After the student types the answer in the input dialog box, the program displays a message dialog box to indicate whether the answer is correct.
SubtractionQuiz

Run

Nested if

\square One if statement can be placed inside another if statement to form a nested if statement.
if i>k:

$$
\begin{aligned}
& \text { if } \mathrm{j}>\mathrm{k}: \\
& \quad \operatorname{print}(" \mathrm{i} \text { and } \mathrm{j} \text { are greater than } \mathrm{k} ")
\end{aligned}
$$

else:
print(" i is less than or equal to k ")

Multiple Alternative (MultiWay) if Statements

```
if score >= 90.0:
    grade = 'A'
else:
```

```
    if score >= 80.0:
```

 if score >= 80.0:
 grade = 'B'
 grade = 'B'
 else:
 if score >= 70.0:
 grade = 'C'
 else:
 if score >= 60.0:
 grade = 'D'
 else:
 grade = 'F'
    ```
(a)
```

if score >= 90.0:
grade = 'A'
elif score >= 80.0:
grade = 'B'
elif score >= 70.0:
grade = 'C'
elif score >= 60.0:
grade = 'D'
else:
grade = 'F'

$$
\text { grade }=' F^{\prime}
$$

```

Equivalent

This is better

\section*{Flowchart}


\section*{Trace if-else statement}

Suppose score is 70.0
```

if score >= 90.0:
grade = 'A'
elif score >= 80.0:
grade = 'B'
elif score >= 70.0:
grade = 'C'
elif score >= 60.0:
grade = 'D'
else:
grade = 'F'

```

\section*{Trace if-else statement}


\section*{Trace if-else statement}

Suppose score is 70.0
The condition is true
```

if score >= 90.0:
grade = 'A'
elif score >= 80
grade = 'B'
elif score >= 70.0:
grade = 'C'
elif score >= 60.0:
grade = 'D'
else:
grade = 'F'

```

\section*{Trace if-else statement}

Suppose score is 70.0

\section*{grade is C}
```

if score >= 90.0:
grade = 'A'
elif score >= 80.
grade = 'B'
elif score >= 7r.0:
grade = 'C
elif score >= 60.0:
grade = 'D'
else:
grade = 'F'

```

\section*{Trace if-else statement}

Suppose score is 70.0

\section*{Exit the if statement}
if score \(\begin{aligned}> & =90 . \\ \text { grade } & =' A '\end{aligned}\)
elf score >= 80.0:
grade \(=\) 'B'
elif score >= 70 .
grade = 'C'
elf score \(>=60\) :
grade = 'D'
else:
grade \(=\) 'F'

\section*{Example}

Now let us write a program to find out the Chinese Zodiac sign for a given year. The Chinese Zodiac sign is based on a 12-year cycle, each year being represented by an animal: rat, ox, tiger, rabbit, dragon, snake, horse, sheep, monkey, rooster, dog, and pig, in this cycle.


\section*{ChineseZodiac}

\section*{Common Errors}

Most common errors in selection statements are caused by incorrect indentation. Consider the following code in (a) and (b).
```

radius = -20
if radius >= 0:
area = radius * radius * 3.14

```
\(\frac{\begin{array}{c}\text { area }=\text { radius }{ }^{*} \text { radius } \\ \text { print("The area is", area) }\end{array}}{\text { (a) Wrong }}\)
(a) Wrong
```

radius = -20
if radius >= 0:
area = radius * radius * 3.14
print("The area is", area)

```
(b) Correct

\section*{Nested If}

Which if clause is matched by the else clause? The indentation indicates that the else clause matches the first if clause in (a) and the second if clause in (b).

\(\mathbf{i}=\mathbf{1}\)
\(\mathbf{j}=2\)
\(\mathbf{k}=3\)
\[
\begin{aligned}
& \text { if i } \underset{\mathbf{i f}}{\boldsymbol{j}} \mathbf{j}>k: \\
& \text { print("A') } \\
& \text { else: } \\
& \text { print("B') }
\end{aligned}
\]

TIP: The code can be simplified by assigning the test value directly to the variable, as shown in (b)
```

if number % 2 == 0:
even = True
else:
even = False

```

(b)

\section*{Problem: Body Mass Index}

Body Mass Index (BMI) is a measure of health on weight. It can be calculated by taking your weight in kilograms and dividing by the square of your height in meters. The interpretation of BMI for people 16 years or older is as follows:

Formula: weight (kg) / [height (m) \(]^{2}\)

\section*{BMI}
\begin{tabular}{ll} 
Below 18.5 & Underweight \\
18.5-24.9 & Normal \\
\(25.0-29.9\) & Overweight \\
Above 30.0 & Obese
\end{tabular}

Below 18.5 Underweight
18.5-24.9 Normal
25.0-29.9 Overweight

Above 30.0 Obese

\section*{ComputeBMI}

\section*{Run}

\section*{Problem: Computing Taxes}

The US federal personal income tax is calculated based on the filing status and taxable income. There are four filing statuses: single filers, married filing jointly, married filing separately, and head of household. The tax rates for 2009 are shown below.

If you are, say, single with a taxable income of \(\$ 10,000\), the first \(\$ 8,350\) is taxed at \(10 \%\) and the other \(\$ 1,650\) is taxed at \(15 \%\). So, your tax is \(\$ 1,082.50\).
\begin{tabular}{|c|r|r|r|r|}
\hline \begin{tabular}{c} 
Marginal \\
Tax Rate
\end{tabular} & \multicolumn{1}{|c|}{ Single } & \begin{tabular}{c} 
Married Filing \\
Jointly or Qualified \\
Widow(er)
\end{tabular} & \begin{tabular}{c} 
Married Filing \\
Separately
\end{tabular} & \multicolumn{1}{c|}{ Head of Household } \\
\hline \(\mathbf{1 0 \%}\) & \(\$ 0-\$ 8,350\) & \(\$ 0-\$ 16,700\) & \(\$ 0-\$ 8,350\) & \(\$ 0-\$ 11,950\) \\
\hline \(\mathbf{1 5 \%}\) & \(\$ 8,351-\$ 33,950\) & \(\$ 16,701-\$ 67,900\) & \(\$ 8,351-\$ 33,950\) & \(\$ 11,951-\$ 45,500\) \\
\hline \(\mathbf{2 5 \%}\) & \(\$ 33,951-\$ 82,250\) & \(\$ 67,901-\$ 137,050\) & \(\$ 33,951-\$ 68,525\) & \(\$ 45,501-\$ 117,450\) \\
\hline \(\mathbf{2 8 \%}\) & \(\$ 82,251-\$ 171,550\) & \(\$ 137,051-\$ 208,850\) & \(\$ 68,525-\$ 104,425\) & \(\$ 117,451-\$ 190,200\) \\
\hline \(\mathbf{3 3 \%}\) & \(\$ 171,551-\$ 372,950\) & \(\$ 208,851-\$ 372,950\) & \(\$ 104,426-\$ 186,475\) & \(\$ 190,201-\$ 372,950\) \\
\hline \(\mathbf{3 5 \%}\) & \(\$ 372,951+\) & \(\$ 372,951+\) & \(\$ 186,476+\) & \(\$ 372,951+\) \\
\hline
\end{tabular}

\section*{Problem: Computing Taxes, cont.}
```

if status == 0:
\# Compute tax for single filers
elif status == 1:
\# Compute tax for married filing jointly
elif status == 2:
\# Compute tax for married filing separately
elif status == 3:
\# Compute tax for head of household
else:
\# Display wrong status

```

\section*{Logical Operators}

Operator
\begin{tabular}{ll} 
not & logical negation \\
and & logical conjunction \\
or & logical disjunction
\end{tabular}

\section*{Truth Table for Operator not}
\begin{tabular}{lll}
p & not p & Example (assume age \(=24\), gender \(=\) ' \({ }^{\prime}\) ' \()\) \\
\hline True & False & \(\operatorname{not}(\) age \(>18)\) is False, because \((\) age \(>18)\) is True. \\
False & True & \(\operatorname{not}\left(\right.\) gender \(\left.=={ }^{\prime} \mathrm{M}^{\prime}\right)\) is True, because \(\left(\right.\) grade \(==\) ' \(\mathrm{M}^{\prime}\) ') is False.
\end{tabular}

\section*{Truth Table for Operator and}
\begin{tabular}{llll} 
p1 & p2 & p1 and p2 & Example (assume age \(=24\), gender \(=\) 'F') \\
\hline False & False & False & \((\) age \(>18)\) and \((\) gender \(==\) 'F') is True, because (age \\
False & True & False & \(>18)\) and \((\) gender \(==\) 'F') are both True. \\
True & False & False & \begin{tabular}{l} 
(age \(>18)\) and \((\) gender \(!=\) 'F') is False, because \\
True
\end{tabular} \\
True & True & (gender \(=\) 'F') is False.
\end{tabular}

\section*{Truth Table for Operator or}
\begin{tabular}{llll} 
p1 & p2 & p1 or p2 & Example (assume age \(=24\), gender \(=\) 'F') \\
\hline False & False & False & (age \(>34\) ) or (gender \(==\) 'F') is true, because (gender \\
False & True & True & \(==\) 'F') is True. \\
True & False & True & (age \(>34\) ) or \((\) gender \(==\) 'M') is False, because (age \(>\) \\
True & True & True & 34) and (gender \(==\) 'M') are both Talse.
\end{tabular}

\section*{Boolean/Logical Expressions}
\[
\begin{aligned}
& a=6 \\
& b=7 \\
& c=42 \\
& \operatorname{print}(1, a==6) \\
& \operatorname{print}(2, a==7) \\
& \operatorname{print}(3, a==6 \text { and } b==7) \\
& \operatorname{print}(4, a==7 \text { and } b==7) \\
& \operatorname{print}(5, \operatorname{not} a==7 \text { and } b==7) \\
& \operatorname{print}(6, a==7 \text { or } b==7) \\
& \operatorname{print}(7, a==7 \text { or } b==6) \\
& \operatorname{print}(8, \operatorname{not}(a==7 \text { and } b==6)) \\
& \operatorname{print}(9, \text { not } a==7 \text { and } b==6)
\end{aligned}
\]

\section*{Output}

\author{
1 True \\ 2 False \\ 3 True \\ 4 False \\ 5 True \\ 6 True \\ 7 False \\ 8 True \\ 9 False
}

\section*{Examples}

Here is a program that checks whether a number is divisible by 2 and 3 , whether a number is divisible by 2 or 3 , and whether a number is divisible by 2 or 3 but not both:

\section*{Run}

\section*{Problem: Determining Leap Year?}

This program first prompts the user to enter a year as an int value and checks if it is a leap year.

A year is a leap year if it is divisible by 4 but not by 100, or it is divisible by 400 .
(year \(\% 4==0\) and year \(\% 100!=0\) ) or (year \% 400 \(=0\) )

\section*{Problem: Lottery}

Write a program that randomly generates a lottery of a twodigit number, prompts the user to enter a two-digit number, and determines whether the user wins according to the following rule:
- If the user input matches the lottery in exact order, the award is \(\$ 10,000\).
- If the user input matches the lottery in any order, the award is \(\$ 3,000\).
- If one digit in the user input matches a digit in the lottery, the award is \(\$ 1,000\).


\section*{Conditional Operator}
\[
\text { if } x>0: 9 \text { } \begin{aligned}
&
\end{aligned}
\]
else:
\[
y=-1
\]
is equivalent to
\(y=1\) if \(x>0\) else -1
expression1 if boolean-expression else expression2

\section*{Conditional Operator}
\[
\begin{aligned}
& \text { if num } \% 2==0: \\
& \quad \text { print }(\text { str (num) }+ \text { "is even") } \\
& \text { else: } \\
& \quad \text { print (str(num) }+ \text { "is odd"); }
\end{aligned}
\]
print("number is even" if (number \(\% 2==0\) ) else "number is odd")

\section*{Operator Precedence}
\(\square+\), (Unary plus and minus)
- ** (Exponentiation)
\(\square\) not
- *, /, //, \% (Multiplication, division, integer division, and remainder)
\(\quad+\), - (Binary addition and subtraction)
- <, <=, >, >= (Comparison)
- ==, != (Equality)
\(\square\) and
- or

口 \(=,+=,-=, *=, /=, / /=, \%=\) (Assignment operator)

\section*{Operator Precedence and Associativity}

The expression in the parentheses is evaluated first. (Parentheses can be nested, in which case the expression in the inner parentheses is executed first.) When evaluating an expression without parentheses, the operators are applied according to the precedence rule and the associativity rule.

If operators with the same precedence are next to each other, their associativity determines the order of evaluation. All binary operators except assignment operators are left-associative.

\section*{Operator Associativity}

When two operators with the same precedence are evaluated, the associativity of the operators determines the order of evaluation. All binary operators except assignment operators are leftassociative.
\(\mathrm{a}-\mathrm{b}+\mathrm{c}-\mathrm{d}\) is equivalent to \(((\mathrm{a}-\mathrm{b})+\mathrm{c})-\mathrm{d}\) Assignment operators are right-associative. Therefore, the expression \(\mathrm{a}=\mathrm{b}+=\mathrm{c}=5\) is equivalent to \(\mathrm{a}=(\mathrm{b}+=(\mathrm{c}=5))\)

\section*{Turtle: Location of an Object}

Test whether a point is inside a circle. The program prompts the user to enter the center of a circle, the radius, and a point.

A point is in the circle if its distance to the center of the circle is less than or equal to the radius of the circle, as shown in Figure 4.7 c . The formula for computing the distance is



\section*{PointInCircle}

Run```

