
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 1

Chapter 5 Loops

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
2

Motivations

Suppose that you need to print a string (e.g.,
"Programming is fun!") a hundred times. It would
be tedious to have to write the following statement
a hundred times:

print("Programming is fun!");

So, how do you solve this problem?

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
3

Opening Problem

print("Programming is fun!");

print("Programming is fun!");

print("Programming is fun!");

print("Programming is fun!");

print("Programming is fun!");

print("Programming is fun!");

…

…

…
print("Programming is fun!");

print("Programming is fun!");

print("Programming is fun!");

Problem:

100

times

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
4

Introducing while Loops

count = 0

while count < 100:

print("Programming is fun!")

count = count + 1

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 5

Objectives
To write programs for executing statements repeatedly by using a

while loop (§5.2).

To develop loops following the loop design strategy (§§5.2.1-5.2.3).

To control a loop with the user’s confirmation (§5.2.4).

To control a loop with a sentinel value (§5.2.5).

To obtain a large amount of input from a file by using input

redirection instead of typing from the keyboard (§5.2.6).

To use for loops to implement counter-controlled loops (§5.3).

To write nested loops (§5.4).

To learn the techniques for minimizing numerical errors (§5.5).

To learn loops from a variety of examples (GCD, FutureTuition,

MonteCarloSimulation, PrimeNumber) (§§5.6, 5.8).

To implement program control with break and continue (§5.7).

To use a loop to control and simulate a random walk (§5.9).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
6

while Loop Flow Chart

while loop-continuation-condition:

Loop body

Statement(s)

count = 0

while count < 100:

print("Programming is fun!")

count = count + 1

loop-

continuation

condition?

True

Statement(s)

(loop body)

False

count < 100?

True

print("Programming is fun!")

count = count + 1

False

(a) (b)

count = 0

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
7

Trace while Loop

count = 0

while count < 2:

print("Programming is fun!")

count = count + 1

Initialize count

animation

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
8

Trace while Loop, cont.

count = 0

while count < 2:

print("Programming is fun!")

count = count + 1

(count < 2) is true

animation

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
9

Trace while Loop, cont.

count = 0

while count < 2:

print("Programming is fun!")

count = count + 1

Print Welcome to Python

animation

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
10

Trace while Loop, cont.

count = 0

while count < 2:

print("Programming is fun!")

count = count + 1

Increase count by 1

count is 1 now

animation

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
11

Trace while Loop, cont.

count = 0

while count < 2:

print("Programming is fun!")

count = count + 1

(count < 2) is still true since count

is 1

animation

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
12

Trace while Loop, cont.

count = 0

while count < 2:

print("Programming is fun!")

count = count + 1

Print Welcome to Python

animation

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
13

Trace while Loop, cont.

count = 0

while count < 2:

print("Programming is fun!")

count = count + 1

Increase count by 1

count is 2 now

animation

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
14

Trace while Loop, cont.

count = 0

while count < 2:

print("Programming is fun!")

count = count + 1

(count < 2) is false since count is 2

now

animation

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
15

Trace while Loop

count = 0

while count < 2:

print("Programming is fun!")

count = count + 1

The loop exits. Execute the next

statement after the loop.

animation

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

The while Loop: a Condition-

Controlled Loop

• In order for a loop to stop executing,

something has to happen inside the loop to

make the condition false

• Iteration: one execution of the body of a

loop

• while loop is known as a pretest loop

– Tests condition before performing an iteration

• Will never execute if condition is false to start with

• Requires performing some steps prior to the loop

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Infinite Loops

• Loops must contain within

themselves a way to terminate

– Something inside a while loop

must eventually make the condition

false

• Infinite loop: loop that does not

have a way of stopping

– Repeats until program is interrupted

– Occurs when programmer forgets to

include stopping code in the loop

Example 1

i = 1

while i>0:

print(i)

i = i + 1

Example 2

j = 1

while True:

print(j)

j = j + 1

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
18

Problem: An Advanced Math Learning Tool

The Math subtraction learning tool program

generates just one question for each run. You can

use a loop to generate questions repeatedly. This

example gives a program that generates five

questions and reports the number of the correct

answers after a student answers all five questions.

SubtractionQuizLoop Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
19

Problem: Guessing Numbers

Write a program that randomly generates an

integer between 0 and 100, inclusive. The program

prompts the user to enter a number continuously

until the number matches the randomly generated

number. For each user input, the program tells the

user whether the input is too low or too high, so

the user can choose the next input intelligently.

Here is a sample run:

GuessNumberOneTime Run

GuessNumber Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
20

Ending a Loop with a Sentinel Value

Often the number of times a loop is executed is not
predetermined. You may use an input value to signify the
end of the loop. Such a value is known as a sentinel value.

Must be distinctive enough so as not to be mistaken for a
regular value in the sequence

Write a program that reads and calculates the sum of an
unspecified number of integers. The input 0 signifies the
end of the input.

SentinelValue Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
21

Numerical Errors
Numeric errors involving floating-point numbers are
inevitable.

Floating Point Arithmetic: Issues and Limitations
(https://docs.python.org/3/tutorial/floatingpoint.html)

IEEE-754 Floating Point Converter (https://www.h-

schmidt.net/FloatConverter/IEEE754.html)

https://realpython.com/python-data-types/#floating-point-
numbers

Here is an example that sums a series that starts with 0.01
and ends with 1.0. The numbers in the series will
increment by 0.01, as follows: 0.01 + 0.02 + 0.03 and so
on.

TestSum Run

https://docs.python.org/3/tutorial/floatingpoint.html
https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://realpython.com/python-data-types/#floating-point-numbers

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
22

Caution

item = 1

sum = 0

while item != 0: # No guarantee item will be 0

sum += item

item -= 0.1

print(sum)

Variable item starts with 1 and is reduced by 0.1 every time the
loop body is executed. The loop should terminate when item
becomes 0. However, there is no guarantee that item will be
exactly 0, because the floating-point arithmetic is approximated.
This loop seems OK on the surface, but it is actually an infinite
loop.

Don’t use floating-point values for equality checking in a loop control.
Since floating-point values are approximations for some values, using
them could result in imprecise counter values and inaccurate results.
Consider the following code for computing 1 + 0.9 + 0.8 + ... + 0.1:

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

The for Loop: a Count-

Controlled Loop
• Count-Controlled loop: iterates a specific number

of times

– Use a for statement to write count-controlled loop

• Designed to work with sequence of data items

– Iterates once for each item in the sequence

• General format:

for variable in [val1, val2, etc]:

statements

• Target variable: the variable which is the target of the

assignment at the beginning of each iteration

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

For Loop with a List

24

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Using the range Function with

the for Loop

• The range function simplifies the process

of writing a for loop

– range returns an iterable object

• Iterable: contains a sequence of values that can be

iterated over

• range characteristics:

– One argument: used as ending limit

– Two arguments: starting value and ending limit

– Three arguments: third argument is step value

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
26

One argument: used as ending limit:

range(endValue)

>>> for i in range(4):

... print(i)

...

0

1

2

3

>>>

- i starts from 0

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
27

Two arguments: starting value and ending limit :

range(initialValue, endValue)

i = initialValue # Initialize loop-control variable

while i < endValue:

Loop body

...

i++ # Adjust loop-control variable

for i in range(initialValue, endValue):

Loop body

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
28

Two arguments: starting value and ending limit :

range(initialValue, endValue)

>>> for v in range(4, 8):

... print(v)

...

4

5

6

7

>>>

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
29

Three arguments: third argument is step value

range(initialValue, endValue, step)

>>> for v in range(3, 9, 2):

... print(v)

...

3

5

7

>>>

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Generating an Iterable Sequence that

Ranges from Highest to Lowest

• The range function can be used to

generate a sequence with numbers in

descending order

– Make sure starting number is larger than end

limit, and step value is negative

– Example: range (5, 1, -1)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
31

Three arguments: third argument is step value

range(initialValue, endValue, step)

>>> for v in range(5, 1, -1):

... print(v)

...

5

4

3

2

>>>

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
32

Nested Loops

Nested loop: loop that is contained inside
another loop

Inner loop goes through all of its
iterations for each iteration of outer loop

Inner loops complete their iterations
faster than outer loops

Total number of iterations in nested loop:
number_iterations_inner x

number_iterations_outer

for i in range(1,5):

for j in range(1,4):

print("i=",i," j=",j)

Output:

i= 1 j= 1

i= 1 j= 2

i= 1 j= 3

i= 2 j= 1

i= 2 j= 2

i= 2 j= 3

i= 3 j= 1

i= 3 j= 2

i= 3 j= 3

i= 4 j= 1

i= 4 j= 2

i= 4 j= 3

Number of Iterations

= 4 x 3 = 12

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
33

Nested Loops

Nested loop: loop that is contained inside

another loop

Problem: Write a program that uses nested for

loops to print a multiplication table.

MultiplicationTable

Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
34

Problem:

Finding the Greatest Common Divisor

Problem: Write a program that prompts the user to enter two positive

integers and finds their greatest common divisor.

Solution: Suppose you enter two integers 4 and 2, their greatest

common divisor is 2. Suppose you enter two integers 16 and 24, their

greatest common divisor is 8. So, how do you find the greatest

common divisor? Let the two input integers be n1 and n2. You know

number 1 is a common divisor, but it may not be the greatest commons

divisor. So you can check whether k (for k = 2, 3, 4, and so on) is a
common divisor for n1 and n2, until k is greater than n1 or n2.

GreatestCommonDivisor Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
35

Problem: Predicting the Future Tuition

Problem: Suppose that the tuition for a university is $10,000 this year

and tuition increases 7% every year. In how many years will the

tuition be doubled?

FutureTuition Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
36

Problem: Predicating the Future Tuition

year = 0 # Year 0

tuition = 10000

year += 1 # Year 1

tuition = tuition * 1.07

year += 1 # Year 2

tuition = tuition * 1.07

year += 1 # Year 3

tuition = tuition * 1.07

FutureTuition Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
37

Problem: Monte Carlo Simulation

The Monte Carlo simulation refers to a technique that uses random

numbers and probability to solve problems. This method has a wide

range of applications in computational mathematics, physics,

chemistry, and finance. This section gives an example of using the

Monto Carlo simulation for estimating .

MonteCarloSimulation Run

x

y

1 -1

1

-1

circleArea / squareArea = / 4.

 can be approximated as 4 *

numberOfHits / 1000000.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

break Statement in Python

The break statement terminates the loop
containing it. Control of the program flows
to the statement immediately after the body
of the loop.

If break statement is inside a nested loop
(loop inside another loop), break will
terminate the innermost loop.

38

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

break Statement in Python

39

s

t

r

The end

Use of break statement

inside loop

for val in "string":

if val == "i":

break

print(val)

print("The end")

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Python continue statement

The continue statement is used to skip the

rest of the code inside a loop for the current

iteration only.

Loop does not terminate but continues on

with the next iteration.

40

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Python continue statement

41

Program to show the use of

continue statement inside

loops

for val in "string":

if val == "i":

continue

print(val)

print("The end")

s

t

r

n

g

The end

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
42

Using break and continue

Examples for using the break and continue

keywords:

TestBreak.py

TestContinue.py

TestBreak

TestContinue

Run

Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
43

break

 sum = 0

 number = 0

 while number < 20:

 number += 1

 sum += number

 if sum >= 100:

 break

 print("The number is ", number)

 print("The sum is ", sum)

Break out of

the loop

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
44

continue

 sum = 0

 number = 0

 while (number < 20):

 number += 1

 if (number == 10 or number == 11):

 continue

 sum += number

 print("The sum is ", sum)

Jump to the

end of the

iteration

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Post-test Loop with break

Python

i = 1

while True:

print(i)

i = i + 1

if(i > 3):

break

45

Output:

1

2

3

// C language post-test (do-while)

// loop

int i = 1;

do{

printf("%d\n", i);

i = i + 1;

} while(i <= 3);

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
46

Guessing Number Problem Revisited

Here is a program for guessing a number. You can

rewrite it using a break statement.

GuessNumberUsingBreak Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
47

Problem: Displaying Prime Numbers

Problem: Write a program that displays the first 50 prime numbers in

five lines, each of which contains 10 numbers. An integer greater than

1 is prime if its only positive divisor is 1 or itself. For example, 2, 3,

5, and 7 are prime numbers, but 4, 6, 8, and 9 are not.

Solution: The problem can be broken into the following tasks:

•For number = 2, 3, 4, 5, 6, ..., test whether the number is prime.

•Determine whether a given number is prime.

•Count the prime numbers.

•Print each prime number, and print 10 numbers per line.

PrimeNumber Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Turtle Graphics: Using Loops to

Draw Designs
• You can use loops with the turtle to draw both simple

shapes and elaborate designs. For example, the following

for loop iterates four times to draw a square that is 100
pixels wide:

import turtle

for x in range(4):

turtle.forward(100)

turtle.right(90)

turtle.done()

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Turtle Graphics: Using Loops to

Draw Designs

• This for loop iterates eight times to draw the

octagon:

import tutle

for x in range(8):

turtle.forward(100)

turtle.right(45)

turtle.done()

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Turtle Graphics: Using Loops to

Draw Designs

• You can create interesting designs by repeatedly drawing a

simple shape, with the turtle tilted at a slightly different angle
each time it draws the shape.

import turtle

NUM_CIRCLES = 36 # Number of circles to draw

RADIUS = 100 # Radius of each circle

ANGLE = 10 # Angle to turn

for x in range(NUM_CIRCLES):

turtle.circle(RADIUS)

turtle.left(ANGLE)

turtle.done()

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Turtle Graphics: Using Loops to

Draw Designs

• This code draws a sequence of 36 straight lines to
make a "starburst" design.

import turtle

START_X = -200 # Starting X coordinate

START_Y = 0 # Starting Y coordinate

NUM_LINES = 36 # Number of lines to draw

LINE_LENGTH = 400 # Length of each line

ANGLE = 170 # Angle to turn

turtle.hideturtle()

turtle.penup()

turtle.goto(START_X, START_Y)

turtle.pendown()

for x in range(NUM_LINES):

turtle.forward(LINE_LENGTH)

turtle.left(ANGLE)

turtle.done()

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
52

Turtle: Random Walk

RandomWalk Run

