
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
1

Chapter 7 Object-Oriented

Programming

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
2

Motivations

After learning the preceding chapters, you are capable of

solving many programming problems using selections,

loops, and functions.

However, these Python features are not sufficient for

developing graphical user interfaces and large scale

software systems.

Suppose you want to develop a graphical user interface

as shown below. How do you program it?

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
3

Objectives
To describe objects and classes, and use classes to model objects (§7.2).

To define classes (§7.2.1).

To construct an object using a constructor that invokes the initializer to

create and initialize data fields (§7.2.2).

To access the members of objects using the dot operator (.) (§7.2.3).

To reference an object itself with the self parameter (§7.2.4).

To use UML graphical notation to describe classes and objects (§7.3).

To distinguish between immutable and mutable (§7.4).

To hide data fields to prevent data corruption and make classes easy to

maintain (§7.5).

To apply class abstraction and encapsulation to software development

(§7.6).

To explore the differences between the procedural paradigm and the

object-oriented paradigm (§7.7).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Procedural Programming

• Procedural programming: writing programs
made of functions that perform specific
tasks

– Procedures (functions) typically operate on data
items that are separate from the procedures

– Data items commonly passed from one
procedure to another

– Focus: to create procedures that operate on the
program’s data

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
5

OO Programming Concepts

• Object-oriented programming (OOP) involves

programming using objects.

• An object represents an entity in the real world that can

be distinctly identified. For example, a student, a desk,

a circle, a button, and even a loan can all be viewed as

objects.

• An object has a unique identity, state, and behaviors.

• The state of an object consists of a set of data fields

(also known as properties) with their current values.

The behavior of an object is defined by a set of

methods.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Object’s State and Methods

6

• In Python, every value is actually an object. Whether it

be a turtle, a list, or even an integer, they are all

objects.

• Programs manipulate those objects either by

performing computation with them or by asking them

to perform methods.

• To be more specific, we say that an object has a state

and a collection of methods that it can perform.

>>>turtle.color(“blue”)

>>> turtle.position()

(0.00,0.00)

>>> turtle.forward(25)

>>> turtle.position()

(25.00,0.00)

>>> turtle.forward(-75)

>>> turtle.position()

(-50.00,0.00)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Object’s State and Methods

7

• The state of an object represents those

things that the object knows about itself.

For example, as we have seen with turtle

objects, each turtle has a state consisting of

the turtle’s position, its color, its heading

and so on.

• Each turtle also has the ability to go

forward, backward, or turn right or left.

• Individual turtles are different in that even

though they are all turtles, they differ in the

specific values of the individual state

attributes (maybe they are in a different

location or have a different heading).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
8

import turtle

wn = turtle.Screen() # Set up the window and its attributes

wn.bgcolor("lightgreen")

tess = turtle.Turtle() # create tess and set some attributes

tess.color("hotpink")

tess.pensize(5)

alex = turtle.Turtle() # create alex

tess.forward(80) # Let tess draw an equilateral triangle

tess.left(120)

tess.forward(80)

tess.left(120)

tess.forward(80)

tess.left(120) # complete the triangle

tess.right(180) # turn tess around

tess.forward(80) # move her away from the origin

alex.forward(50) # make alex draw a square

alex.left(90)

alex.forward(50)

alex.left(90)

alex.forward(50)

alex.left(90)

alex.forward(50)

alex.left(90)

wn.exitonclick()

Object’s

State and Methods

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Classes

• Class: code that specifies the data attributes

and methods of a particular type of object

– Similar to a blueprint of a house or a cookie cutter

– It is simply a template that we construct objects

from it.

• Instance: an object created from a class

– Similar to a specific house built according to the

blueprint or a specific cookie

– There can be many instances of one class

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Classes (cont’d.)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Classes (cont’d.)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
12

Objects

An object has both a state and behavior. The state

defines the object (Data Fields), and the behavior

defines what the object does (Methods).

Class Name: Circle

Data Fields:

radius is _______

Methods:

getArea

Circle Object 1

Data Fields:

radius is 10

Circle Object 2

Data Fields:

radius is 25

Circle Object 3

Data Fields:

radius is 125

A class template

Three objects

of the Circle class

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
13

Classes

A Python class uses variables to store data fields and defines

methods to perform actions. Additionally, a class provides a special

type method, known as initializer, which is invoked to create a new

object. An initializer can perform any action, but initializer is

designed to perform initializing actions, such as creating the data

fields of objects.

class ClassName:

initializer

methods

Circle TestCircle Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
14

Constructing Objects

Once a class is defined, you can create objects from the class by

using the following syntax, called a constructor:

className(arguments)

 object

Data Fields:

__init__(self, …)

2. It invokes the class’s __init__ method
to initialize the object. The self

parameter in the __init__ method is

automatically set to reference the

object that was just created.

1. It creates an object in the memory for
the class.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
15

Constructing Objects

The effect of constructing a Circle object using Circle(5) is shown

below:

Circle object

2. Invokes __init__(self, radius)

1. Creates a Circle object.

Circle object
radius: 5

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
16

Instance Methods

• Methods are functions defined inside a class.

• They are invoked by objects to perform actions on the objects.

• For this reason, the methods are also called instance methods in

Python.

• You probably noticed that all the methods including the

constructor have the first parameter self, which refers to the

object that invokes the method.

• You can use any name for this parameter. But by convention, self

is used.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
17

Accessing Objects

• After an object is created, you can access its data fields and

invoke its methods using the dot operator (.), also known as the

object member access operator.

• For example, the following code accesses the radius data field and

invokes the getPerimeter and getArea methods.

>>> from Circle import Circle

>>> c = Circle(5)

>>> c.getPerimeter()

31.41592653589793

>>> c.radius = 10

>>> c.getArea()

314.1592653589793

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
18

Why self?
• Note that the first parameter is special. It is used in the

implementation of the method, but not used when the method is

called.

• So, what is this parameter self for? Why does Python need it?

• self is a parameter that represents an object. Using self, you can

access instance variables in an object. Instance variables are for

storing data fields.

• Each object is an instance of a class. Instance variables are tied to

specific objects. Each object has its own instance variables.

• You can use the syntax self.x to access the instance variable x for

the object self in a method.

• self parameter is required in every method in the class –

references the specific object that the method is working on

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
19

UML Class Diagram

Circle

radius: float

Circle(radius = 1: float)

getArea(): float

circle1: Circle

radius = 1

Class name

 Data fields

 Constructors

circle2: Circle

radius = 25

circle3: Circle

radius = 125

UML Class Diagram

UML notation

for objects

methods

UML : short for Unified Modeling Language, is a standardized modeling language consisting
of an integrated set of diagrams, developed to help system and software developers for specifying
visualizing, constructing, and documenting the artifacts of software systems, as well as for business
modeling and other non-software systems.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
20

Trace Code

myCircle = Circle(5.0)

yourCircle = Circle()

yourCircle.radius = 100

: Circle

radius: 5.0

reference valuemyCircle

Assign object reference

to myCircle

animation

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
21

Trace Code

myCircle = Circle(5.0)

yourCircle = Circle()

yourCircle.radius = 100

: Circle

radius: 5.0

reference valuemyCircle

Assign object reference

to yourCircle

animation

: Circle

radius: 1.0

reference valueyourCircle

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
22

Trace Code

myCircle = Circle(5.0)

yourCircle = Circle()

yourCircle.radius = 100

: Circle

radius: 5.0

reference valuemyCircle

Modify radius in

yourCircle

animation

: Circle

radius: 100

reference valueyourCircle

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
23

Example: Defining Classes and
Creating Objects

TestTV

Run

TV

 TV

channel: int

volumeLevel: int

on: bool

TV()

turnOn(): None

turnOff(): None

getChannel(): int

setChannel(channel: int): None

getVolume(): int

setVolume(volumeLevel: int): None

channelUp(): None

channelDown(): None

volumeUp(): None

volumeDown(): None

The current channel (1 to 120) of this TV.

The current volume level (1 to 7) of this TV.

Indicates whether this TV is on/off.

Constructs a default TV object.

Turns on this TV.

Turns off this TV.

Returns the channel for this TV.

Sets a new channel for this TV.

Gets the volume level for this TV.

Sets a new volume level for this TV.

Increases the channel number by 1.

Decreases the channel number by 1.

Increases the volume level by 1.

Decreases the volume level by 1.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
24

The built-in datetime Class

from datetime import datetime

d = datetime.now()

print("Current year is " + str(d.year))

print("Current month is " + str(d.month))

print("Current day of month is " + str(d.day))

print("Current hour is " + str(d.hour))

print("Current minute is " + str(d.minute))

print("Current second is " + str(d.second))

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Encapsulation

Encapsulation is one of the fundamental
concepts in object-oriented programming
(OOP).

It describes the idea of bundling data and
methods that work on that data within one unit,
e.g., a class.

This concept is also often used to hide the
internal representation, or state, of an object
from the outside. This is called information
hiding.

25

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
26

Information Hiding

You can use the encapsulation concept to

implement an information-hiding mechanism.
– To protect data.

– To make class easy to maintain.

You implement this information-hiding

mechanism by making your class attributes

inaccessible from the outside

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
27

Information Hiding

To prevent direct modifications of data fields, don’t let the client
directly access data fields.

This can be done by defining private data fields. In Python, the
private data fields are defined with two leading underscores.

You can also define a private method named with two leading
underscores.

If it is needed, you can provide getter and/or setter methods for
attributes that shall be readable or updatable by other classes.

CircleWithPrivateDataRadius

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
28

Data Field Encapsulation

>>> from CircleWithPrivateRadius import Circle

>>> c = Circle(5)

>>> c.__radius

AttributeError: 'Circle' object has no attribute

'__radius'

>>> c.getRadius()

5

CircleWithPrivateDataRadius

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
29

Design Guide

If a class is designed for other programs to use,
to prevent data from being tampered with and to
make the class easy to maintain, define data
fields private (hide).

If a class is only used internally by your own
program, there is no need to encapsulate the data
fields.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Getter and Setter Methods

• Typically, all of a class’s data attributes are
private and you have to provide methods to
access and change them

• Getter (Accessor) methods: return a value from
a class’s attribute without changing it

– Safe way for code outside the class to retrieve the
value of attributes

• Setter (Mutator) methods: store or change the
value of a data attribute

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
31

Class Abstraction and Encapsulation
Class abstraction means to separate class implementation from
the use of the class.
The creator of the class provides a description of the class and let
the user know how the class can be used.
The user of the class does not need to know how the class is
implemented.
The detail of implementation is encapsulated and hidden from the
user.

Class Contract

(Signatures of

public methods and

public constants)

Class

Class implementation

is like a black box

hidden from the clients

Clients use the

class through the

contract of the class

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
32

Designing the Loan Class

TestLoanClass RunLoan

Loan

-annualInterestRate: float

-numberOfYears: int

-loanAmount: float

-borrower: str

Loan(annualInterestRate: float,

numberOfYear: int, loanAmount:

float, borrower: str)

The annual interest rate of the loan (default: 2.5).

The number of years for the loan (default: 1)

The loan amount (default: 1000).

The borrower of this loan.

Constructs a Loan object with the specified annual

interest rate, number of years, loan amount, and

borrower.

The get methods for these data fields are

provided in the class, but omitted in the

UML diagram for brevity.

The – sign denotes a private data field.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
33

Object-Oriented Thinking
This book’s approach is to teach problem solving
and fundamental programming techniques before
object-oriented programming.

This section will show how procedural and
object-oriented programming differ.

You will see the benefits of object-oriented
programming and learn to use it effectively.

We will use several examples in the rest of the
chapter to illustrate the advantages of the object-
oriented approach. The examples involve
designing new classes and using them in
applications.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
34

The BMI Class

BMI

-name: str

-age: int

-weight: float

-height: float

BMI(name: str, age: int, weight: float,

height: float)

getBMI(): float

getStatus(): str

The name of the person.

The age of the person.

The weight of the person in pounds.

The height of the person in inches.

Creates a BMI object with the specified

name, weight, height, and a default age

20.

Returns the BMI

Returns the BMI status (e.g., normal,

overweight, etc.)

The get methods for these data fields are

provided in the class, but omitted in the

UML diagram for brevity.

UseBMIClass RunBMI

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Object-Oriented Programming

• Object-oriented programming: focused on

programming using objects

• Object: entity that contains data and

procedures (functions or methods)

– Data is known as data attributes and procedures

are known as methods

• Methods perform operations on the data attributes

• Encapsulation: combining data and code

into a single object

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Object-Oriented Programming

(cont’d.)

• Data hiding: object’s data attributes are

hidden from code outside the object

– Access restricted to the object’s methods

• Protects from accidental corruption

• Outside code does not need to know internal

structure of the object

• Object reusability: the same object can be

used in different programs

– Example: 3D image object can be used for

architecture and game programming

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

In object-oriented programming, a program

consists of many classes/objects

37

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
38

In procedureal programming, a program

consists of many functions

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
39

Procedural vs. Object-Oriented

In procedural programming, data and
operations on the data are separate,
and this methodology requires sending
data to methods.

Object-oriented programming places
data and the operations that pertain to
them in an object. (Encapsulation)

This approach solves many of the
problems inherent in procedural
programming.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
40

Procedural vs. Object-Oriented

The object-oriented programming approach
organizes programs in a way that mirrors the
real world, in which all objects are associated
with both attributes and activities.

Using objects improves software reusability and
makes programs easier to develop and easier to
maintain.

Programming in Python involves thinking in
terms of objects; a Python program can be
viewed as a collection of cooperating objects.

