
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
1

Chapter 11

Lists for Multi-dimensional Data

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
2

Motivations

Chicago

Boston

New York

Atlanta

Miami

Dallas

Houston

Distance Table (in miles)

Chicago Boston New York Atlanta Miami Dallas Houston

 0 983 787 714 1375 967 1087

 983 0 214 1102 1763 1723 1842

 787 214 0 888 1549 1548 1627

 714 1102 888 0 661 781 810

 1375 1763 1549 661 0 1426 1187

 967 1723 1548 781 1426 0 239

 1087 1842 1627 810 1187 239 0

 1723 1548 781 1426 0 239 distances = [

[0, 983, 787, 714, 1375, 967, 1087],

[983, 0, 214, 1102, 1763, 1723, 1842],

[787, 214, 0, 888, 1549, 1548, 1627],

[714, 1102, 888, 0, 661, 781, 810],

[1375, 1763, 1549, 661, 0, 1426, 1187],

[967, 1723, 1548, 781, 1426, 0, 239],

[1087, 1842, 1627, 810, 1187, 239, 0]

]

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
3

Objectives
To give examples of representing data using two-dimensional lists

(§11.1).

To access elements in a two-dimensional list using row and column

indexes (§11.2).

To program common operations for two-dimensional lists (displaying

lists, summing all elements, finding min and max elements, and

random shuffling) (§11.2).

To pass two-dimensional lists to functions (§11.3).

To write a program for grading multiple-choice questions using two-

dimensional lists (§11.4).

To solve the closest-pair problem using two-dimensional lists (§§11.5-

11.6).

To check a Sudoku solution using two-dimensional lists (§§11.7-11.8).

To use multidimensional lists (§11.9).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
4

Processing Two-Dimensional lists

You can view a two-dimensional list as a list that consists
of rows. Each row is a list that contains the values. The
rows can be accessed using the index, conveniently called a
row index. The values in each row can be accessed through
another index, conveniently called a column index.

 1

 1

 2

 3

 4

 5

 6

 7

 0

 0

 0

 1

 0

 0

 0

 8

 0

 0

 9

 0

 3

 0

 0

 0

 0

 [0]

 [1]

 [2]

 [3]

 [4]

[0] [1] [2] [3] [4]

4 matrix = [

 [1, 2, 3, 4, 5],

 [6, 7, 0, 0, 0],

 [0, 1, 0, 0, 0],

 [1, 0, 0, 0, 8],

 [0, 0, 9, 0, 3],

]

matrix[0] is [1, 2, 3, 4, 5]

matrix[1] is [6, 7, 0, 0, 0]

matrix[2] is [0, 1, 0, 0, 0]

matrix[3] is [1, 0, 0, 0, 8]

matrix[4] is [0, 0, 9, 0, 3]

matrix[0][0] is 1

matrix[4][4] is 3

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
5

Processing Two-Dimensional lists

See the examples in the text.

1. (Initializing lists with input values)

2. (Initializing lists with random values)

3. (Printing lists)

4. (Summing all elements)

5. (Summing all elements by column)

6. (Which row has the largest sum)

7. (Random shuffling)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
6

Initializing lists with input values

matrix = [] # Create an empty list

numberOfRows = eval(input("Enter the number of rows: "))

numberOfColumns = eval(input("Enter the number of columns: "))

for row in range(0, numberOfRows):

matrix.append([]) # Add an empty new row

for column in range(0, numberOfColumns):

value = eval(input("Enter an element and press Enter: "))

matrix[row].append(value)

print(matrix)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
7

Initializing lists with random values

import random

matrix = [] # Create an empty list

numberOfRows = eval(input("Enter the number of rows: "))

numberOfColumns = eval(input("Enter the number of columns: "))

for row in range(0, numberOfRows):

matrix.append([]) # Add an empty new row

for column in range(0, numberOfColumns):

matrix[row].append(random.randrange(0, 100))

print(matrix)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
8

Printing lists

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] # Assume a list is given

for row in range(0, len(matrix)):

for column in range(0, len(matrix[row])):

print(matrix[row][column], end = " ")

print() # Print a newline

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
9

Summing all elements

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] # Assume a list is given

total = 0

for row in range(0, len(matrix)):

for column in range(0, len(matrix[row])):

total += matrix[row][column]

print("Total is " + str(total)) # Print the total

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
10

Summing elements by column

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] # Assume a list is given

total = 0

for column in range(0, len(matrix[0])):

for row in range(0, len(matrix)):

total += matrix[row][column]

print("Sum for column " + str(column) + " is " + str(total))

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
11

Summing elements by column

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] # Assume a list is given

maxRow = sum(matrix[0]) # Get sum of the first row in maxRow

indexOfMaxRow = 0

for row in range(1, len(matrix)):

if sum(matrix[row]) > maxRow:

maxRow = sum(matrix[row])

indexOfMaxRow = row

print("Row " + str(indexOfMaxRow)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
12

Random shuffling

import random

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] # Assume a list is given

for row in range(0, len(matrix)):

for column in range(0, len(matrix[row])):

i = random.randrange(0, len(matrix))

j = random.randrange(0, len(matrix[row]))

Swap matrix[row][column] with matrix[i][j]

matrix[row][column], matrix[i][j] = \

matrix[i][j], matrix[row][column]

print(matrix)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
13

Passing Tow-Dimensional lists to

Functions

PassTwoDimensionalList

Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
14

Problem: Grading Multiple-

Choice Test

Objective: write a

program that grades

multiple-choice test.

A B A C C D E E A D

D B A B C A E E A D

E D D A C B E E A D

C B A E D C E E A D

A B D C C D E E A D

B B E C C D E E A D

B B A C C D E E A D

E B E C C D E E A D

0 1 2 3 4 5 6 7 8 9

Student 0

Student 1

Student 2

Student 3

Student 4

Student 5

Student 6

Student 7

Students’ Answers to the Questions:

D B D C C D A E A D

0 1 2 3 4 5 6 7 8 9

Key

Key to the Questions:

GradeExam Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
15

Problem: Finding Two Points

Nearest to Each Other

FindNearestPoints Run

(1, 1)

(-1, -1)

(-1, 3)

(2, 0.5)

(3, 3)

(4, 2)

(2, -1)

(4, -0.5)

-1 3

-1 -1

 1 1

 2 0.5

 2 -1

 3 3

 4 2

 4 -0.5

 x y

0

1

2

3

4

5

6

7

NearestPoints

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
16

GUI: Finding Two Points Nearest

to Each Other

NearestPoints Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
17

What is Sudoku?

 5 3 7

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
18

Every row contains the numbers 1 to 9

 5 3 7

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

 5 3 4 6 7 8 9 1 2

 6 7 2 1 9 5 3 4 8

 1 9 8 3 4 2 5 6 7

 8 5 9 7 6 1 4 2 3

 4 2 6 8 5 3 7 9 1

 7 1 3 9 2 4 8 5 6

 9 6 1 5 3 7 2 8 4

 2 8 7 4 1 9 6 3 5

 3 4 5 2 8 6 1 7 9

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
19

Every column contains the numbers 1 to 9

 5 3 7

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

5 3 4 6 7 8 9 1 2

6 7 2 1 9 5 3 4 8

1 9 8 3 4 2 5 6 7

8 5 9 7 6 1 4 2 3

4 2 6 8 5 3 7 9 1

7 1 3 9 2 4 8 5 6

9 6 1 5 3 7 2 8 4

2 8 7 4 1 9 6 3 5

3 4 5 2 8 6 1 7 9

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
20

Every 3×3 box contains the numbers 1 to 9

 5 3 7

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

5 3 4 6 7 8 9 1 2

6 7 2 1 9 5 3 4 8

1 9 8 3 4 2 5 6 7

8 5 9 7 6 1 4 2 3

4 2 6 8 5 3 7 9 1

7 1 3 9 2 4 8 5 6

9 6 1 5 3 7 2 8 4

2 8 7 4 1 9 6 3 5

3 4 5 2 8 6 1 7 9

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
21

Checking Whether a Solution Is Correct

 5 3 7

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

 5 3 4 6 7 8 9 1 2

 6 7 2 1 9 5 3 4 8

 1 9 8 3 4 2 5 6 7

 8 5 9 7 6 1 4 2 3

 4 2 6 8 5 3 7 9 1

 7 1 3 9 2 4 8 5 6

 9 6 1 5 3 7 2 8 4

 2 8 7 4 1 9 6 3 5

 3 4 5 2 8 6 1 7 9

RunTestheckSudokuSolution

CheckSudokuSolution

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
22

Sudoku GUI

RunSudokuGUI

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
23

Multidimensional lists
scores = [

[[9.5, 20.5], [9.0, 22.5], [15, 33.5], [13, 21.5], [15, 2.5]],

[[4.5, 21.5], [9.0, 22.5], [15, 34.5], [12, 20.5], [14, 9.5]],

[[6.5, 30.5], [9.4, 10.5], [11, 33.5], [11, 23.5], [10, 2.5]],

[[6.5, 23.5], [9.4, 32.5], [13, 34.5], [11, 20.5], [16, 9.5]],

[[8.5, 26.5], [9.4, 52.5], [13, 36.5], [13, 24.5], [16, 2.5]],

[[9.5, 20.5], [9.4, 42.5], [13, 31.5], [12, 20.5], [16, 6.5]]]

scores[i] [j] [k]

Which student

Which exam

Multiple-choice or essay

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
24

Problem: Weather Information
Suppose a meteorology station records the
temperature and humidity at each hour of every day
and stores the data for the past ten days in a text file
named weather.txt. Each line of the file consists of
four numbers that indicate the day, hour, temperature,
and humidity. Your task is to write a program that
calculates the average daily temperature and humidity
for the 10 days.

Weather

Run

1 1 76.4 0.92

1 2 77.7 0.93

...

10 23 97.7 0.71

10 24 98.7 0.74

(a)

10 24 98.7 0.74

1 2 77.7 0.93

...

10 23 97.7 0.71

1 1 76.4 0.92

(b)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
25

Problem: Guessing Birthday

Listing gives a program that guesses a
birthday. The program can be simplified by
storing the numbers in five sets in a three-
dimensional list, and it prompts the user for
the answers using a loop, as shown in Listing
7.6. The sample run of the program can be the
same as shown in Listing 3.8.

GuessBirthdayUsingList Run

