
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
1

Chapter 12 Inheritance and Class Design

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
2

Objectives

To develop a subclass from a superclass through inheritance

(§12.2).

To override methods in the subclass (§12.3).

To explore the object class and its methods (§12.4).

To understand polymorphism and dynamic binding (§12.5).

To determine if an object is an instance of a class using the

isinstance function (§12.6).

To discover relationships among classes (§12.8).

To design classes using composition and inheritance relationships

(§§12.9-12.11).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Python Inheritance

Inheritance allows us to define a class that

inherits all the methods and properties from

another class.

Parent class is the class being inherited

from, also called base class.

Child class is the class that inherits from

another class, also called derived class.

3

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Base or Parent Class: Person

Create a class named Person, with firstname
and lastname properties, and a printname
method:

4

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Child Class : Student
To create a class that inherits the functionality from

another class, send the parent class as a parameter when

creating the child class:

5

Use the pass keyword when you do not want to add any other properties or methods

to the class.

❑ Use the Student class to create an object, and then execute the printname

method:

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Child Class : Student

Add a property called graduationyear and a

method called welcome to the Student class:

6

super() function that will make the child class inherit all the

methods and properties from its parent:

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
7

Example

Suppose you will define classes to model circles,

rectangles, and triangles. These classes have many

common features. What is the best way to design

these classes so to avoid redundancy? The answer

is to use inheritance.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
8

Superclasses and Subclasses

GeometricObject

Circle

Rectangle

TestCircleRectangle

Run

GeometricObject

-color: str

-filled: bool

GeometricObject(color: str, filled:

bool)

getColor(): str

setColor(color: str): None

isFilled(): bool

setFilled(filled: bool): None

__str__(): str

The color of the object (default: white).

Indicates whether the object is filled with a color (default: false).

Creates a GeometricObject with the specified color and filled

values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns a string representation of this object.

Circle

-radius: float

Circle(radius: float, color: str, filled:

bool)

getRadius(): float

setRadius(radius: double): None

getArea(): float

getPerimeter(): float

getDiameter(): float

printCircle(): None

Rectangle

-width: double

-height: double

Rectangle(width: float, height: float color:

string, filled: bool)

getWidth(): float

setWidth(width: float): None

getHeight(): float

setHeight(height: float): None

getArea(): float

getPerimeter(): float

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
9

Overriding Methods

A subclass inherits methods from a superclass. Sometimes it is

necessary for the subclass to modify the implementation of a method

defined in the superclass. This is referred to as method overriding.

class Circle(GeometricObject):

Other methods are omitted

Override the __str__ method defined in GeometricObject

def __str__(self):

return super().__str__() + " radius: " + str(radius)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
10

The object Class

• Every class in Python is descended from the object class.

• If no inheritance is specified when a class is defined, the

superclass of the class is object by default.

 class ClassName:

 ...

Equivalent
class ClassName(object):

 ...

There are more than a dozen methods defined in the object class.

We discuss four methods __new__(), __init__(), __str__(), and

__eq__(other) here.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
11

The __new__, __init__ Methods

All methods defined in the object class are special

methods with two leading underscores and two trailing

underscores.

• The __new__() method is automatically invoked

when an object is constructed.

• This method then invokes the __init__() method to

initialize the object.

• Normally you should only override the __init__()

method to initialize the data fields defined in the new

class.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
12

The __str__ Method

The __str__() method returns a string

representation for the object. By default, it returns

a string consisting of a class name of which the

object is an instance and the object’s memory

address in hexadecimal.

def __str__(self):

return "color: " + self.__color + \

" and filled: " + str(self.__filled)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
13

The __eq__ Method

The __eq__(other) method returns True if two

objects are the same. By default, x.__eq__(y)

(i.e., x == y) returns False, but x.__eq__(x) is

True. You can override this method to return True

if two objects have the same contents.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
14

Polymorphism

The three pillars of object-oriented programming are

encapsulation, inheritance, and polymorphism.

The inheritance relationship enables a subclass to inherit

features from its superclass with additional new features.

A subclass is a specialization of its superclass; every instance

of a subclass is also an instance of its superclass, but not vice

versa.

For example, every circle is a geometric object, but not every

geometric object is a circle. Therefore, you can always pass an

instance of a subclass to a parameter of its superclass type.

PolymorphismDemo Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
15

Dynamic Binding

Dynamic binding works as follows: Suppose an object o is an
instance of classes C1, C2, ..., Cn-1, and Cn, where C1 is a subclass
of C2, C2 is a subclass of C3, ..., and Cn-1 is a subclass of Cn. That
is, Cn is the most general class, and C1 is the most specific class.
In Python, Cn is the object class. If o invokes a method p, the
JVM searches the implementation for the method p in C1, C2, ...,
Cn-1 and Cn, in this order, until it is found. Once an
implementation is found, the search stops and the first-found
implementation is invoked.

Cn Cn-1 C2 C1

object

Since o is an instance of C1, o is also an

instance of C2, C3, …, Cn-1, and Cn

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
16

The isinstance Function

The isinstance function can be used to determine if

an object is an instance of a class.

IsinstanceDemo Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
17

Case Study: A Reusable Clock

StillClock

-hour: int

-minute: int

-second: int

StillClock(container)

setCurrentTime(): None

tkinter.Canvas

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

The get and set methods for these data

fields are provided in the class, but

omitted in the UML diagram for brevity.

The hour in the clock.

The minute in the clock.

The second in the clock.

Constructs a default clock for the current time,

placed inside a container.

Sets hour, minute, and second to current time.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
18

Case Study: A Reusable Clock

DisplayClock RunStill Clock

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
19

Relationships among Classes

Association

Aggregation

Composition

Inheritance

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
20

Association

Association represents a general binary relationship that describes

an activity between two classes.

Student * 5..60
Take Teach

0..3 1

Teacher
Faculty Course

An association is usually represented as a data field in the class.

class Student:

 def addCourse(self,

 course):

 # add course to a list

class Course:

 def addStudent(self,

 student):

add student to a list

 def setFaculty(self, faculty):

Code omitted

class Faculty:

 def addCourse(self,

 course):

 # add course to a list

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
21

Association Between Same Class

Association may exist between objects of the same class.

For example, a person may have a supervisor.

Person

Supervisor

1

1

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
22

Aggregation and Composition

Aggregation is a special form of association, which
represents an ownership relationship between two classes.
Aggregation models the has-a relationship. If an object is
exclusively owned by an aggregated object, the
relationship between the object and its aggregated object is
referred to as composition.

Name Address Person

Composition Aggregation

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
23

Representing Aggregation in Classes

An aggregation relationship is usually represented

as a data field in the aggregated class.

class Name:

 ...

class Student:

 def _init_(self, name, address)

 self.name = name

 self.address = address

 ...

}

class Address:

 ...

Aggregated class Aggregating class Aggregated class

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
24

The Course Class

Course Run

Course

-courseName: str

-students: list

Course(courseName: str)

getCourseName(): str

addStudent(student: str): None

dropStudent(student: str): None

getStudents(): list

getNumberOfStudents(): int

The name of the course.

An array to store the students for the course.

Creates a course with the specified name.

Returns the course name.

Adds a new student to the course.

Drops a student from the course.

Returns the students for the course.

Returns the number of students for the course.

TestCourse

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
25

The Stack Class

Data1

Data2
Data1 Data1

Data2

Data3

Data1 Data2 Data3

Data1

Data2

Data3

Data1

Data2 Data1

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
26

The Stack Class

You can define a class to model stacks. You can use a list to store the

elements in a stack. There are two ways to design the stack and queue

classes:

-Using inheritance: You can define a stack class by extending list.

-Using composition: You can create a list as a data field in the stack

class.

Stack

list Stack list

Both designs are fine, but using composition is better because it

enables you to define a completely new stack class without inheriting

the unnecessary and inappropriate methods from the list class.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
27

The Stack Class

Stack RunTestStack

Stack

-elements: list

+Stack()

+isEmpty(): bool

+peek(): object

+push(value: object): None

+pop(): object

+getSize(): int

A list to store elements in the stack.

Constructs an empty stack.

Returns True if the stack is empty.

Returns the element at the top of the stack without removing

it from the stack.

Stores an element into the top of the stack.

Removes the element at the top of the stack and returns it.

Returns the number of elements in the stack.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
28

The FigureCanvas Class

Figure Canvas RunDisplayFigures

FigureCanvas

-figureType: str

-filled: bool

FigureCanvas(container, figureType,

filled, width, height)

tkinter.Canvas

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

The get and set methods for these data

fields are provided in the class, but

omitted in the UML diagram for brevity.

Specifies the figure type (line, rectangle, oval, or arc).

Specifies whether the figure is filled (default: False).

Creates a figure canvas inside a container with the specified type,

filled, width (default 200), and height (default 200).

