
COE 4213564
Introduction to Artificial Intelligence

Intelligent Agents

Chapter 2

Spring 2022

Many slides are adapted from CS 188 (http://ai.berkeley.edu), CIS 521, CS 221.

Intelligent Agents

Chapter 2

Chapter 2 © 2022 Pearson
Education Ltd.

Artificial Intelligence: A Modern Approach

Fourth Edition, Global Edition

Agents

Designing Rational Agents

▪ An agent is an entity that perceives and acts.

▪ A rational agent selects actions that maximize its
(expected) utility.

▪ Characteristics of the percepts, environment, and
action space dictate techniques for selecting
rational actions

▪ This course is about:

▪ General AI techniques for a variety of problem
types

▪ Learning to recognize when and how a new
problem can be solved with an existing
technique

A
ge

n
t

?

Sensors

Actuators

En
viro

n
m

e
n

t

Percepts

Actions

Agents and environments

?

agent

Chapter 2 © 2022
Pearson Education Ltd.

5

sensors

percepts

actions

environment

actuators

Agents include humans, robots, softbots, thermostats, etc.

An agent can be anything that can be viewed as perceiving its environment

through sensors and acting upon that environment through actuators

 The agent function maps from percept histories to actions:

f : P∗ → A

The agent program runs on the physical architecture to produce f

Vacuum-cleaner world

A B

Chapter 2 © 2022 Pearson
Education Ltd.

6

Percepts: location and contents, e.g., [A, Dirty]

Actions: Lef t, Right, Suck, N oOp

Chapter 2 © 2022 Pearson
Education Ltd.

7

A vacuum-cleaner agent

Percept sequence Action

[A, Clean] Right

[A, Dirty] Suck

[B, Clean] Lef t

[B, Dirty] Suck

[A, Clean], [A, Clean] Right

[A, Clean], [A, Dirty] Suck

. .

function Reflex-Vacuum-Agent([location,status]) returns an action

if status = Dirty then return Suck

else if location = A then return Right

else if location = B then return Left

What is the right function?
Can it be implemented in a small agent program?

Chapter 2
© 2022
Pearson
Education
Ltd.

8

Rationality

Fixed performance measure evaluates the environment sequence
– one point per square cleaned up in time T ?
– one point per clean square per time step, minus one per move?
– penalize for > k dirty squares?

A rational agent chooses whichever action maximizes the expected value of
the performance measure given the percept sequence to date

Rational /= omniscient
– percepts may not supply all relevant information
Rational /= clairvoyant
– action outcomes may not be as expected
Hence, rational /= successful

Rational ⇒ exploration, learning, autonomy

We need to be careful to
distinguish between rationality
and omniscience. An omniscient
agent knows the actual outcome
of its actions and can act
accordingly; but omniscience is
impossible in reality.

Chapter 2
© 2022
Pearson
Education
Ltd.

9

PEAS

To design a rational agent, we must specify the task environment

Consider, e.g., the task of designing an automated taxi:

Performance measure??

Environment??

Actuators??

Sensors??

10

PEAS

To design a rational agent, we must specify the task environment

Consider, e.g., the task of designing an automated taxi:

Chapter 2
© 2022
Pearson
Education
Ltd.

11

Internet shopping agent

Performance measure??

Environment??

Actuators??

Sensors??

12

Internet shopping agent

Performance measure?? price, quality, appropriateness, efficiency

Environment?? current and future WWW sites, vendors, shippers

Actuators?? display to user, follow URL, fill in form

Sensors?? HTML pages (text, graphics, scripts)

• The examples include physical as well as virtual environments. Note that virtual task
environments can be just as complex as the “real” world: for example, a software agent
(or software robot or softbot) that trades on auction and reselling Web sites deals with
millions of other users and billions of objects, many with real images.

© 2022 Pearson Education Ltd.

Examples of agent types and their PEAS descriptions.

13Chapter 2 © 2022 Pearson Education Ltd.

Properties of task environments

▪ The range of task environments that might arise in AI is obviously
vast. We can, however, identify a fairly small number of
dimensions along which task environments can be categorized.

▪ These dimensions determine, to a large extent, the appropriate
agent design and the applicability of each of the principal families
of techniques for agent implementation

14

Properties of task environments

▪ Fully observable vs. partially observable:

▪ If an agent’s sensors give it access to the complete state of the environment at each
point in time, then we say that the task environment is fully observable. A task
environment is effectively fully observable if the sensors detect all aspects that are
relevant to the choice of action; relevance, in turn, depends on the performance
measure. Fully observable environments are convenient because the agent need not
maintain any internal state to keep track of the world.

▪ An environment might be partially observable because of noisy and inaccurate sensors
or because parts of the state are simply missing from the sensor data—for example, a
vacuum agent with only a local dirt sensor cannot tell whether there is dirt in other
squares, and an automated taxi cannot see what other drivers are thinking.

▪ If the agent has no sensors at all then the environment is unobservable.

Properties of task environments

▪ Single-agent vs. multiagent:
▪ The distinction between single-agent and multiagent environments

may seem simple enough. For example, an agent solving a crossword
puzzle by itself is clearly in a single-agent environment, whereas an
agent playing chess is in a two agent environment.

▪ In chess, the opponent entity B is trying to maximize its performance
measure, which, by the rules of chess, minimizes agent A’s
performance measure. Thus, chess is a competitive multiagent
environment.

▪ On the other hand, in the taxi-driving environment, avoiding collisions
maximizes the performance measure of all agents, so it is a partially
cooperative multiagent environment

Properties of task environments

▪ Deterministic vs. nondeterministic:
▪ If the next state of the environment is completely determined by the current

state and the action executed by the agent(s), then we say the environment is
deterministic; otherwise, it is nondeterministic.

▪ In principle, an agent need not worry about uncertainty in a fully observable,
deterministic environment.

▪ If the environment is partially observable, however, then it could appear to be
nondeterministic.

▪ One final note: the word stochastic is used by some as a synonym for
“nondeterministic,” but we make a distinction between the two terms; we say
that a model of the environment is stochastic if it explicitly deals with
probabilities (e.g., “there’s a 25% chance of rain tomorrow”) and
“nondeterministic” if the possibilities are listed without being quantified (e.g.,
“there’s a chance of rain tomorrow”).

Properties of task environments

▪ Episodic vs. sequential:
▪ In an episodic task environment, the agent’s experience is divided into atomic

episodes. In each episode the agent receives a percept and then performs a
single action. Crucially, the next episode does not depend on the actions taken
in previous episodes. Many classification tasks are episodic. For example, an
agent that has to spot defective parts on an assembly line bases each decision
on the current part, regardless of previous decisions; moreover, the current
decision doesn’t affect whether the next part is defective.

▪ In sequential environments, on the other hand, the current decision could
affect all future decisions.

▪ Chess and taxi driving are sequential: in both cases, short-term actions can
have long-term consequences. Episodic environments are much simpler than
sequential environments because the agent does not need to think ahead.

Properties of task environments

▪ Static vs. dynamic:
▪ If the environment can change while an agent is deliberating (- To think carefully and

often slowly, as about a choice to be made. -To consult with another or others in a process of reaching a
decision), then we say the environment is dynamic for that agent; otherwise, it is
static.

▪ Static environments are easy to deal with because the agent need not keep
looking at the world while it is deciding on an action, nor need it worry about the
passage of time.

▪ Dynamic environments, on the other hand, are continuously asking the agent what
it wants to do; if it hasn’t decided yet, that counts as deciding to do nothing.

▪ If the environment itself does not change with the passage of time but the agent’s
performance score does, then we say the environment is semidynamic.

▪ Taxi driving is clearly dynamic: the other cars and the taxi itself keep moving while
the driving algorithm dithers about what to do next. Chess, when played with a
clock, is semidynamic. Crossword puzzles are static.

Properties of task environments

▪ Discrete vs. continuous:

▪ The discrete/continuous distinction applies to the state of the environment, to
the way time is handled, and to the percepts and actions of the agent.

▪ For example, the chess environment has a finite number of distinct states
(excluding the clock). Chess also has a discrete set of percepts and actions.

▪ Taxi driving is a continuous-state and continuous-time problem: the speed and
location of the taxi and of the other vehicles sweep through a range of
continuous values and do so smoothly over time. Taxi-driving actions are also
continuous (steering angles, etc.).

▪ Input from digital cameras is discrete, strictly speaking, but is typically treated
as representing continuously varying intensities and locations.

Properties of task environments

▪ Known vs. unknown:
▪ Strictly speaking, this distinction refers not to the environment itself but to the agent’s (or

designer’s) state of knowledge about the “laws of physics” of the environment.
▪ In a known environment, the outcomes (or outcome probabilities if the environment is

nondeterministic) for all actions are given.
▪ Obviously, if the environment is unknown, the agent will have to learn how it works in order

to make good decisions.

• The distinction between known and unknown environments is not the same as the one
between fully and partially observable environments.

• It is quite possible for a known environment to be partially observable—for example, in
solitaire card games, I know the rules but am still unable to see the cards that have not yet
been turned over.

• Conversely, an unknown environment can be fully observable—in a new video game, the
screen may show the entire game state but I still don’t know what the buttons do until I try
them.

Properties of task environments

▪ The hardest case is partially observable, multiagent,
nondeterministic, sequential, dynamic, continuous, and
unknown.

▪ Taxi driving is hard in all these senses, except that the driver’s
environment is mostly known. Driving a rented car in a new
country with unfamiliar geography, different traffic laws, and
nervous passengers is a lot more exciting.

▪ Figure 2.6 lists the properties of a number of familiar
environments.

Figure 2.6 Examples of task environments and their characteristics.

24

Environment types

Solitaire Backgammon Internet shopping Taxi

Observable??

Deterministic??
Episodic??
Static??
Discrete?? Single-
agent??

Chapter 2
© 2022
Pearson
Education
Ltd.

25

Environment types

Solitaire Backgammon Internet shopping Taxi

Observable??

Deterministic??
Episodic??
Static??
Discrete?? Single-agent??

Yes Yes No No

Chapter 2 © 2022 Pearson
Education Ltd.

26

Environment types

Solitaire Backgammon Internet shopping Taxi

Observable??

Deterministic??
Episodic??
Static??
Discrete?? Single-
agent??

Yes Yes No No

Yes No Partly No

Chapter 2 © 2022 Pearson
Education Ltd.

27

Environment types

Solitaire Backgammon Internet shopping Taxi

Observable??

Deterministic??
Episodic??
Static??
Discrete?? Single-
agent??

Yes Yes No No

Yes No Partly No
No No No No

Chapter 2 © 2022 Pearson
Education Ltd.

28

Environment types

Solitaire Backgammon Internet shopping Taxi

Observable??

Deterministic??
Episodic??
Static??
Discrete?? Single-
agent??

Yes Yes No No

Yes No Partly No
No No No No
Yes Semi Semi No

Chapter 2 © 2022 Pearson
Education Ltd.

29

Environment types

Solitaire Backgammon Internet shopping Taxi

Observable??

Deterministic??
Episodic??
Static??
Discrete?? Single-
agent??

Yes Yes No No

Yes No Partly No
No No No No
Yes Semi Semi No
Yes Yes Yes No

Chapter 2 © 2022
Pearson Education Ltd.

30

Environment types

Solitaire Backgammon Internet shopping Taxi

Observable??

Deterministic??
Episodic??
Static??
Discrete??
Single-agent??

Yes Yes No No

Yes No Partly No
No No No No
Yes Semi Semi No
Yes Yes Yes No
Yes No Yes (except auctions) No

The environment type largely determines the agent design

The real world is (of course) partially observable, stochastic, sequential, dynamic, continuous, multi-agent

The Structure of Agents

▪ The job of AI is to design an agent program that implements the
agent function-the mapping from percepts to actions.

▪ We assume this program will run on some sort of computing
device with physical sensors and actuators—we call this the
agent architecture:

agent = architecture+program

31

Agent programs

▪ The agent programs that we design in our book all have the same skeleton: they
take the current percept as input from the sensors and return an action to the
actuators.

▪ For example, Figure 2.7 shows a rather trivial agent program that keeps track of
the percept sequence and then uses it to index into a table of actions to decide
what to do.

Chapter 2 © 2022
Pearson Education Ltd.

33

Four basic kinds of agent programs

Four basic types in order of increasing generality:
–simple reflex agents
–reflex agents with state
–goal-based agents
–utility-based agents

All these can be turned into learning agents that can improve the
performance of their components so as to generate better actions.

Simple reflex agents

▪ The simplest kind of agent is the simple reflex agent. These agents select actions on the
basis of the current percept, ignoring the rest of the percept history. For example, the
vacuum agent is a simple reflex agent, because its decision is based only on the current
location and on whether that location contains dirt.

▪ An agent program for this agent is shown in Figure 2.8.

34

A simple reflex agent with rules

▪ A more general and flexible approach is first to build a general-purpose interpreter for condition–action
rules and then to create rule sets for specific task environments. Figure 2.9 gives the structure of this
general program in schematic form, showing how the condition–action rules allow the agent to make the
connection from percept to action.

▪ A condition–action rule: if car-in-front-is-braking then initiate-braking.

An agent program for acting according to rules

▪ An agent program for Figure 2.9 is shown in Figure 2.10. The INTERPRET-INPUT function generates an
abstracted description of the current state from the percept, and the RULE-MATCH function returns the
first rule in the set of rules that matches the given state description.

▪ Simple reflex agents have the admirable property of being simple, but they are of limited intelligence.
The agent in Figure 2.10 will work only if the correct decision can be made on the basis of just the
current percept—that is, only if the environment is fully observable.

Chapter 2 © 2022
Pearson Education Ltd.

37

Example

function Reflex-Vacuum-Agent([location,status]) returns an action

if status = Dirty then return Suck

else if location = A then return Right

else if location = B then return Left

(setq joe (make-agent :name ’ j o e :body (make-agent-body)
:program (make-reflex-vacuum-agent-program))

(defun make-reflex-vacuum-agent-program ()
#’(lambda (percept)

(l e t ((location (f i r s t percept)) (status (second percept)))
(cond ((eq status ’ d i r t y) ’Suck)

((eq location ’A) ’Right)
((eq location ’ B) ’ L e f t)))))

LISP

Language:

Model-based reflex agents

▪ The most effective way to handle partial observability is for the agent to keep
track of the part of the world it can’t see now. That is, the agent should
maintain some sort of internal state that depends on the percept history and
thereby reflects at least some of the unobserved aspects of the current state.

▪ We need some information about how the world changes over time. This
knowledge about “how the world works” is called a transition model of the
world.

▪ We need some information about how the state of the world is reflected in
the agent’s percepts. This kind of knowledge is called a sensor model.

▪ Together, the transition model and sensor model allow an agent to keep track
of the state of the world—to the extent possible given the limitations of the
agent’s sensors. An agent that uses such models is called a model-based
agent.

A model-based reflex agent with state
▪ Figure 2.11 gives the structure of the model-based reflex agent with internal state, showing

how the current percept is combined with the old internal state to generate the updated
description of the current state, based on the agent’s model of how the world works.

A model-based reflex agent
▪ The agent program is shown in Figure 2.12. The interesting part is the function UPDATE-STATE, which is

responsible for creating the new internal state description. The details of how models and states are
represented vary widely depending on the type of environment and the particular technology used in the agent
design.

Chapter 2 © 2022 Pearson
Education Ltd.

41

Example

function Reflex-Vacuum-Agent([location,status]) returns an action

static: last A, last B, numbers, initially ∞

if status = Dirty then . . .

(defun make-reflex-vacuum-agent-with-state-program () (l e t ((l a s t - A
 i n f i n i t y) (last - B i n f i n i t y)) #’(lambda (percept)

(l e t ((location (f i r s t percept)) (status (second percept))) (i n c f last -A)

 (i n c f last - B)

(cond
((eq status ’ d i r t y)

(i f (eq location ’A) (setq last - A 0) (setq last - B 0)) ’Suck)

((eq l o c a t i o n ’ A) (i f (> l a s t - B 3) ’ R i g h t ’NoOp))

((eq l o c a t i o n ’ B) (i f (> l a s t - A 3) ’ L e f t ’ N oOp)))))))

Goal-based agents

▪ Knowing something about the current state of the environment is not
always enough to decide what to do. For example, at a road junction,
the taxi can turn left, turn right, or go straight on.

▪ The correct decision depends on where the taxi is trying to get to. In
other words, as well as a current state description, the agent needs
some sort of goal information that describes situations that are
desirable—for example, being at a particular destination.

▪ The agent program can combine this with the model (the same
information as was used in the model-based reflex agent) to choose
actions that achieve the goal.

▪ Figure 2.13 shows the goal-based agent’s structure.

42

A model-based, goal-based agent.

Utility-based agents

▪ Goals alone are not enough to generate high-quality behavior in most
environments. For example, many action sequences will get the taxi to its
destination (thereby achieving the goal), but some are quicker, safer, more
reliable, or cheaper than others. Goals just provide a crude binary distinction
between “happy” and “unhappy” states.

▪ A more general performance measure should allow a comparison of different
world states according to exactly how happy they would make the agent. Because
“happy” does not sound very scientific, economists and computer scientists use
the term utility instead.

▪ We have already seen that a performance measure assigns a score to any given
sequence of environment states.

▪ An agent’s utility function is essentially an internalization of the performance
measure. Provided that the internal utility function and the external performance
measure are in agreement, an agent that chooses actions to maximize its utility
will be rational according to the external performance measure.

▪ The utility-based agent structure appears in Figure 2.14.

A model-based, utility-based agent.

Learning agents

▪ Turing (1950) considers the idea of actually programming his intelligent
machines by hand. He estimates how much work this might take and
concludes, “Some more expeditious method seems desirable.” The
method he proposes is to build learning machines and then to teach
them. In many areas of AI, this is now the preferred method for
creating state-of-the-art systems.

▪ Any type of agent (model-based, goal-based, utility-based, etc.) can be
built as a learning agent (or not).

▪ Learning has another advantage, as we noted earlier: it allows the
agent to operate in initially unknown environments and to become
more competent than its initial knowledge alone might allow.

Learning agents

▪ A learning agent can be divided into four conceptual components, as
shown in Figure 2.15.

▪ The most important distinction is between the learning element, which
is responsible for making improvements, and the performance
element, which is responsible for selecting external actions.

▪ The performance element is what we have previously considered to be
the entire agent: it takes in percepts and decides on actions.

▪ The learning element uses feedback from the critic on how the agent is
doing and determines how the performance element should be
modified to do better in the future.

Learning agents

49

Summary

• Agents interact with environments through actuators and sensors

• The agent function describes what the agent does in all circumstances The

performance measure evaluates the environment sequence

• A perfectly rational agent maximizes expected performance Agent

programs implement (some) agent functions

• PEAS descriptions define task environments Environments are

categorized along several dimensions:

observable? deterministic? episodic? static? discrete? single-agent?

• Several basic agent architectures exist:
reflex, reflex with state, goal-based, utility-based

	Slide 1: COE 4213564 Introduction to Artificial Intelligence
	Slide 2
	Slide 3: Agents
	Slide 4: Designing Rational Agents
	Slide 5: Agents and environments
	Slide 6: Vacuum-cleaner world
	Slide 7: A vacuum-cleaner agent
	Slide 8: Rationality
	Slide 9: PEAS
	Slide 10: PEAS
	Slide 11: Internet shopping agent
	Slide 12: Internet shopping agent
	Slide 13: Examples of agent types and their PEAS descriptions.
	Slide 14: Properties of task environments
	Slide 15: Properties of task environments
	Slide 16: Properties of task environments
	Slide 17: Properties of task environments
	Slide 18: Properties of task environments
	Slide 19: Properties of task environments
	Slide 20: Properties of task environments
	Slide 21: Properties of task environments
	Slide 22: Properties of task environments
	Slide 23: Figure 2.6 Examples of task environments and their characteristics.
	Slide 24: Environment types
	Slide 25: Environment types
	Slide 26: Environment types
	Slide 27: Environment types
	Slide 28: Environment types
	Slide 29: Environment types
	Slide 30: Environment types
	Slide 31: The Structure of Agents
	Slide 32: Agent programs
	Slide 33: Four basic kinds of agent programs
	Slide 34: Simple reflex agents
	Slide 35: A simple reflex agent with rules
	Slide 36: An agent program for acting according to rules
	Slide 37: Example
	Slide 38: Model-based reflex agents
	Slide 39: A model-based reflex agent with state
	Slide 40: A model-based reflex agent
	Slide 41: Example
	Slide 42: Goal-based agents
	Slide 43: A model-based, goal-based agent.
	Slide 44: Utility-based agents
	Slide 45: A model-based, utility-based agent.
	Slide 46: Learning agents
	Slide 47: Learning agents
	Slide 48: Learning agents
	Slide 49: Summary

