
COE 4213564
Introduction to Artificial Intelligence

Search in Complex Environments

Many slides are adapted from CS 188 (http://ai.berkeley.edu), CIS 521, CS 221, CS182, CS4420.

Search in

Complex

Environments

Chapter 4

Chapter 4, Sections 3–4

2

Artificial Intelligence: A Modern Approach

Fourth Edition, Global Edition

© 2022 Pearson Education Ltd.

COE 4213564 : Introduction to Artificial Intelligence

Iterative Improvement Methods

▪ The search algorithms that we have seen so far are designed to explore
search spaces systematically.
▪ This systematicity is achieved by keeping one or more paths in memory and by

recording which alternatives have been explored at each point along the path.
▪ When a goal is found, the path to that goal also constitutes a solution to the

problem.

▪ The best of these methods can currently handle search spaces of up to 10100

states / ~1,000 binary variables. (where a set of variables define a state or
configuration.)

▪ What if we have much larger search spaces?
▪ Search spaces for some real-world problems may be much larger e.g.,
▪ 1030,000 states as in certain reasoning and planning tasks
▪ State space is large/complex and keeping whole frontier in memory is impractical

▪ Some of these problems can be solved by Iterative Improvement Methods

Finding a valid final configuration or state

▪ In many problems, the path to the goal is
irrelevant.

▪ The goal state itself is the solution
▪ For example, in the 8-queens problem, we care

only about finding a valid final configuration (or
state) of 8 queens.

▪ A set of variables define a state or configuration. A
valid configuration or state is defined by domains
for every variable and constraints among variables.

• The eight queens puzzle is the

problem of placing eight chess

queens on an 8×8 chessboard so

that no two queens threaten each

other.

• The eight queens puzzle has 92

distinct solutions.

• If solutions that differ only by the

symmetry operations of rotation and

reflection of the board are counted

as one, the puzzle has 12 solutions.

Iterative Improvement Methods

▪ In many optimization problems the goal state itself is the solution
▪ The state space is a set of complete configurations
▪ Search is about

▪ finding the optimal configuration (as in TSP) or
▪ just a feasible configuration (as in scheduling problems, timetable)

▪ In such cases, one can use iterative improvement, or local search methods.
▪ These methods are suitable for problems in which all that matters is the solution

state, not the path cost to reach it.
▪ An evaluation or objective function h must be available that measures the quality of

each state
▪ Main Idea: Start with a random initial configuration and make small, local changes

to it that improve its quality.
▪ Many important applications : integrated-circuit design, factory floor layout, job

shop scheduling, automatic programming, telecommunications network
optimization, crop planning, and portfolio management.

Local Search and Optimization Problems

▪ Local search algorithms operate by searching from a start state to
neighboring states, without keeping track of the paths, nor the set of states
that have been reached.

▪ Two key advantages:
▪ they use very little memory; and
▪ they can often find reasonable solutions in large or infinite state spaces for which

systematic algorithms are unsuitable.

▪ They are not systematic—they might never explore a portion of the search
space where a solution actually resides.

▪ Local search algorithms can also solve optimization problems, in which the
aim is to find the best state according to an objective function.

State-space landscape

▪ To understand local search, consider the
states of a problem laid out in a state-space
landscape, as shown in Figure 4.1. Local
search algorithms explore this landscape.

▪ Each point (state) in the landscape has an
“elevation” defined by the value of the
objective function.
▪ If elevation corresponds to an objective

function, then the aim is to find the highest
peak—a global maximum—and we call the
process hill climbing.

▪ If elevation corresponds to cost in continuous
space, then the aim is to find the lowest
valley—a global minimum—and we call it
gradient descent.

▪ A complete local search algorithm always
finds a goal if one exists;

▪ An optimal algorithm always finds a global
minimum/maximum

▪ Problem: depending on initial state, can get
stuck in local maxima/minima

Exploring the Landscape

▪ Local Maxima: peaks that
arenʼt the highest point in the
space

▪ Plateaus: the space has a
broad flat region that gives the
search algorithm no direction
(random walk)

▪ Ridges: flat like a plateau, but
with drop-offs to the sides;
steps to the North, East, South
and West may go down, but a
step to the NW may go up.

Hill-climbing search

▪ Simple, general idea:
▪ Start wherever

▪ Repeat: move to the best neighboring state

▪ If no neighbors better than current, quit

Hill-climbing search

Hill-climbing search

▪ It is simply a loop that continually moves in the direction of increasing
value—that is, uphill. It terminates when it reaches a “peak” where no
neighbor has a higher value.

▪ The algorithm does not maintain a search tree, so the data structure for the
current node need only record the state and the value of the objective
function.

▪ Hill climbing does not look ahead beyond the immediate neighbors of the
current state. (This resembles trying to find the top of Mount Everest in a
thick fog while suffering from amnesia.)

▪ Hill climbing is sometimes called greedy local search because it grabs a good
neighbor state without thinking ahead about where to go next.

The heuristic objective(cost) function

▪ An evaluation or objective function h must be
available that measures the quality of each state

▪ Main Idea: Start with a random initial
configuration and make small, local changes to it
that improve its quality.

▪ Ideally, the evaluation function h should be
monotonic: the closer a state to an optimal goal
state the better its h-value.

▪ Each state can be seen as a point on a surface.
▪ The search consists in moving on the surface,

looking for its highest peaks: the optimal
solutions.

▪ Similar to Greedy search in that it uses h, but
does not allow backtracking or jumping to an
alternative path since it doesnʼt “remember”
where it has been.

Ex: Heuristic for n-queens problem

▪ Goal: n queens on board with no conflicts, i.e., no queen attacking another
▪ Put n queens on an n × n board with no two queens on the same row, column, or diagonal
▪ States: n queens on board, one per column
▪ Actions: move a queen in its column
▪ Heuristic value function h: number of conflicts (the number of pairs of queens that are attacking each other; this will

be zero only for solutions.)
▪ Strategy: Move a queen to reduce number of conflicts

Ex: Heuristic for n-queens problem

Ex:

Example: TSP

▪ Travelling Salesperson Problem (TSP) : Given a list of cities and the distances between each pair of cities, what
is the shortest possible route that visits each city exactly once and returns to the origin city?" It is an NP-hard
problem in combinatorial optimization, important in theoretical computer science and operations research.

▪ Pairwise exchange method: The pairwise exchange or 2-opt technique involves iteratively removing two edges
and replacing these with two different edges that reconnect the fragments created by edge removal into a new
and shorter tour.

▪ h = length of the tour
▪ Strategy: Start with any complete tour, perform pairwise exchanges

Hill Climbing Drawbacks

Local maxima

Plateaus

18

Diagonal ridges:
Figure 4.4 Illustration of why ridges cause

difficulties for hill climbing. The grid of

states (dark circles) is superimposed on a

ridge rising from left to right, creating a

sequence of local maxima that are not

directly connected to each other. From

each local maximum, all the available

actions point downhill.

It is a greedy algorithm that often perform quite well. Unfortunately, hill climbing can get stuck for any of the following

reasons: Local maxima, Ridges (a sequence of local maxima), Plateaus (a flat area of the state-space landscape).

Trajectories, difficulties

19

20

Local search

Cost

States

• local search can get
stuck on a local
maximum/minimum
and not find the
optimal solution

From : CSC 361 - Dr. Yousef Al-Ohali

21

Local search

Current
Solution

22

Local search

Current
Solution

23

Local search

Current
Solution

24

Local search

Current
Solution

25

Local search

Best

Optimal

Solution

Hill-climbing search

▪ It is a greedy algorithm that often perform quite well. Hill climbing can make
rapid progress toward a solution because it is usually quite easy to improve a
bad state.

▪ Unfortunately, hill climbing can get stuck for any of the following reasons: Local
maxima, Ridges (a sequence of local maxima), Plateaus (a flat area of the state-
space landscape).

▪ How could we solve more problems?
▪ One answer is to keep going when we reach a plateau—to allow a sideways move in the

hope that the plateau is really a shoulder, from which progress is possible.
▪ Stochastic hill climbing chooses at random from among the uphill moves; the probability

of selection can vary with the steepness of the uphill move.
▪ First-choice hill climbing implements stochastic hill climbing by generating successors

randomly until one is generated that is better than the current state.
▪ Another variant is random-restart hill climbing, which adopts the adage, “If at first you

don’t succeed, try, try again.” It conducts a series of hill-climbing searches from
randomly generated initial states, until a goal is found.

Global and local maxima

- Random-restart hill climbing overcomes local maxima—trivially complete (find global optimum)

- Random sideways moves escape from shoulders but they may loop forever on flat maxima

• A plateau is a flat area of the

state-space landscape. It can

be a flat local maximum, from

which no uphill exit exists, or a

shoulder, from which progress

is possible.

• A hill-climbing search might

get lost on the plateau.

• Random sideways moves

can escape from shoulders

but they loop forever on flat

maxima.

Sideways move on the 8-queens problem

▪ Starting from a randomly generated 8-
queens state, steepest-ascent hill
climbing gets stuck 86% of the time,
solving only 14% of problem instances.

▪ We could allow up to, say, 100
consecutive sideways moves in the 8-
queens problem. This raises the
percentage of problem instances solved
by hill climbing from 14% to 94%.

▪ Success comes at a cost: the algorithm
averages roughly 21 steps for each
successful instance and 64 for each
failure.

The success of hill climbing

▪ The success of hill climbing depends very much on the shape of the
state-space landscape: if there are few local maxima and plateaux,
random-restart hill climbing will find a good solution very quickly.

▪ On the other hand, many real problems have a landscape that looks
more like a widely scattered family of balding porcupines on a flat
floor

▪ NP-hard problems typically have an exponential number of local
maxima to get stuck on.

▪ Despite this, a reasonably good local maximum can often be found
after a small number of restarts.

argmax and argmin notation

▪ The argmax and argmin concept is common in many AI and
machine learning algorithms

▪ See argmax on Wikipedia (argmin is similar)

▪ Argmaxx f(x) finds the value of x for which f(x) is largest

https://en.wikipedia.org/wiki/Arg_max

Gradient ascent / descent
▪ Gradient descent procedure for finding the argx min f(x)

▪ choose initial x0 randomly

▪ repeat
▪ xi+1 ← xi – η f '(xi)

▪ until the sequence x0, x1, …, xi, xi+1 converges

▪ Step size η (eta) is small (perhaps 0.1 or 0.05)

▪ Often used in machine learning algorithms

Images from http://en.wikipedia.org/wiki/Gradient_descent

https://en.wikipedia.org/wiki/Gradient_descent

Gradient descent

* Assume we have some cost-function:
and we want minimize over continuous variables x1,x2,..,xn

1. Compute the gradient :

2. Take a small step downhill in the direction of the gradient:

3. Check if

4. If true then accept move, if not “reject”.

5. Repeat.

Gradient = the most direct direction up-hill in the objective

(cost) function, so its negative minimizes the cost function.

Gradient descent
Hill-climbing in continuous spaces

(or, Armijo rule, etc.)

(decrease step size, etc.)

http://upload.wikimedia.org/wikipedia/commons/d/db/Gradient_ascent_(contour).png

▪ How do I determine the gradient?

▪ Derive formula using multivariate calculus.

▪ Ask a mathematician or a domain expert.

▪ Do a literature search.

▪ Variations of gradient descent can improve
performance for this or that special case.

▪ See Numerical Recipes in C (and in other languages) by
Press, Teukolsky, Vetterling, and Flannery.

▪ Simulated Annealing, Linear Programming too

▪ Works well in smooth spaces; poorly in rough.

Gradient descent
Hill-climbing in continuous spaces

Gradient methods vs. Newton’s method

▪ Gradient descent algorithms find local minima by
moving along the direction of steepest descent
while Newton's method takes into account
curvature information and thereby often
improves convergence.

▪ A reminder of Newton’s method from Calculus:
xi+1 ← xi – η f '(xi) / f ''(xi)

▪ Newton’s method uses 2nd order information
(e.g., 2nd derivative) to take a faster route to a
minimum

▪ Second-order info. is more expensive to compute
▪ Does not always converge; sometimes unstable
▪ If converges, usually very fast
▪ Works well for smooth, non-pathological

functions, linearization accurate
▪ Works poorly for wiggly, ill-behaved functions

▪ See gradient descent

Contour lines of a function

Gradient descent (green)

Newton’s method (red)
Image from http://en.wikipedia.org/wiki/Newton's_method_in_optimization

https://en.wikipedia.org/wiki/Gradient_descent

Simulated annealing

▪ A hill-climbing algorithm that never makes “downhill” moves toward states
with lower value (or higher cost) is always vulnerable to getting stuck in a
local maximum. In contrast, a purely random walk that moves to a
successor state without concern for the value will eventually stumble upon
the global maximum but will be extremely inefficient.

▪ Therefore, it seems reasonable to try to combine hill climbing with a
random walk in a way that yields both efficiency and completeness.
Simulated annealing is such an algorithm.

▪ In metallurgy, annealing is a technique involving heating & controlled
cooling of a material to increase size of its crystals & reduce defects

▪ Heat causes atoms to become unstuck from initial positions (local minima
of internal energy) and wander randomly through states of higher energy

▪ Slow cooling gives them more chances of finding configurations with lower
internal energy than initial one

37

Real annealing: Sword

▪ The worker heats the metal, then slowly cools it as he hammers the blade into
shape.
▪ If he cools the blade too quickly the metal will form patches of different composition;

▪ If the metal is cooled slowly while it is shaped, the constituent metals will form a uniform
alloy.

Simulated Annealing(SA) intuitions

▪ Combines hill climbing (for efficiency) with random
walk (for completeness)

▪ Analogy: getting a ping-pong ball into the deepest
depression in a bumpy surface
▪ Shake the surface to get the ball out of local minima
▪ Don’t shake too hard to dislodge it from global

minimum

▪ Simulated annealing:
▪ Start shaking hard (high temperature) and gradually

reduce shaking intensity (lower temperature)
▪ Escape local minima by allowing some “bad”moves
▪ But gradually reduce their size and frequency

▪ The simulated-annealing solution is to start by
shaking hard (i.e., at a high temperature) and then
gradually reduce the intensity of the shaking (i.e.,
lower the temperature).

https://en.wikipedia.org/wiki/Random_walk
https://en.wikipedia.org/wiki/Random_walk

39

Simulated Annealing

Cost

States

Best

• SA can avoid becoming
trapped at local minima

• SA is a stochastic
algorithm involving
asymptotic convergence
and allowing random
movements in the
searched neighborhood
in order to escape local
minima

From : CSC 361 - Dr. Yousef Al-Ohali

40

Simulated Annealing

Cost

States

Best

41

Simulated Annealing

Cost

States

Best

42

Simulated Annealing

Cost

States

Best

43

Simulated Annealing

Cost

States

Best

44

Simulated Annealing

Cost

States

Best

45

Simulated Annealing

Cost

States

Best

46

Simulated Annealing

Cost

States

Best

47

Simulated Annealing

Cost

States

Best

48

Simulated Annealing

Cost

States

Best

49

Simulated Annealing

Cost

States

Best

50

Simulated Annealing

Cost

States

Best

51

Simulated Annealing

Cost

States

Best

52

Simulated Annealing

Cost

States

Best

53

Simulated Annealing

Cost

States

Best

54

Simulated Annealing

Cost

States

Best

55

Simulated Annealing

Cost

States

Best

56

Simulated Annealing

Cost

States

Best

57

Simulated Annealing

Cost

States

Best

58

Simulated Annealing

Cost

States

Best

59

Simulated Annealing

Cost

States

Best

60

Simulated Annealing

Cost

States

Best

61

Simulated Annealing

Cost

States

Best

Simulated annealing (SA)

▪ SA can avoid becoming trapped at local minima
▪ SA is a stochastic algorithm involving asymptotic

convergence and allowing random movements in
the searched neighborhood in order to escape
local minima

▪ SA uses a control parameter T, which by analogy
with the original application, is known as the
system temperature

▪ The higher the temperature, the higher
probability of accepting a worse solution.

▪ Typically, T decreases as the algorithm runs
longer. Theoretically this algorithm always finds
the global optimum but it can run very slow for
some problems and in practice it would be a
problem as to how to decide the rate at which to
decrease T.

▪ T starts out high and gradually decreases toward 0

Simulated annealing

▪ The overall structure of the simulated-annealing algorithm (Figure 4.5) is
similar to hill climbing. Instead of picking the best move, however, it picks a
random move.

▪ If the move improves the situation, it is always accepted. Otherwise, the
algorithm accepts the move with some probability less than 1.

▪ The probability decreases exponentially with the “badness” of the move—the
amount ΔE by which the evaluation is worsened.

▪ A “bad” move from A to B is accepted with a probability
-(f(B)-f(A)/T)e

▪ The higher the temperature, the more likely it is that a bad move can be made
▪ As T tends to zero, probability tends to zero, and SA becomes more like hill

climbing
▪ If T lowered slowly enough, SA is complete and admissible

Simulated annealing algorithm

Simulated Annealing

▪ Widely used in VLSI layout, airline scheduling, etc.
▪ Often works very well in practice

▪ But usually VERY VERY slow

▪ One can prove:
▪ If T decreases slowly enough, then simulated annealing search will find a global

optimum with probability approaching 1
▪ Unfortunately this can take a VERY VERY long time
▪ Note: in any finite search space, random guessing also will find a global optimum with

probability approaching 1
▪ So, ultimately this is a very weak claim

▪ Theoretical guarantee (proof):
▪ Stationary distribution (Boltzmann): P(x)  eE(x)/T

▪ If T decreased slowly enough, will converge to optimal state!
▪ Proof sketch

▪ Consider two adjacent states x, y with E(y) > E(x) [high is good]
▪ Assume x→y and y→x and outdegrees D(x) = D(y) = D
▪ Let P(x), P(y) be the equilibrium occupancy probabilities at T
▪ Let P(x→y) be the probability that state x transitions to state y

Simulated Annealing

▪ Is this convergence an interesting guarantee?

▪ Sounds like magic, but reality is reality:
▪ The more downhill steps you need to escape a local optimum,

the less likely you are to ever make them all in a row
▪ “Slowly enough” may mean exponentially slowly
▪ Random restart hillclimbing also converges to optimal state…

▪ Simulated annealing and its relatives are a key
workhorse in VLSI layout and other optimal
configuration problems

Local beam search (LBS)

▪ Basic idea:

▪ K copies of a local search algorithm, initialized randomly

▪ For each iteration

▪ Generate ALL successors from K current states

▪ Choose best K of these to be the new current states

▪ This is similar to k searches running in parallel!

▪ LBS≠ running k random restarts in parallel instead of sequence.

Or, K chosen randomly with

a bias towards good ones

Local beam search (LBS)

▪ Idea:
▪ Unlike Hill Climbing, keep k states instead of just 1

▪ Algorithm:
▪ Local Beam Search keeps track of k states rather than just one.
▪ It starts with k randomly generated states.
▪ At each step, all the successors of all the states are generated.
▪ If any one is a goal, the algorithm halts, otherwise it selects the k best

successors from the complete list and repeats.

a1 b1 k1… Create k random initial states

… Generate their children

a2 b2 k2… Select the k best children

… Repeat …

Local beam search

71

Local Beam Search

Cost

States

From : CSC 361 - Dr. Yousef Al-Ohali

72

Local Beam Search

73

Local Beam Search

74

Local Beam Search

75

Local Beam Search

76

Local Beam Search

77

Local Beam Search

78

Local Beam Search

79

Local Beam Search

80

Local Beam Search

81

Local Beam Search

82

Local Beam Search

83

Local Beam Search

84

Local Beam Search

85

Local Beam Search

86

Local Beam Search

Tabu search

▪ Tabu search is a meta-heuristic optimization technique, which owes its name to its memory
structures, used to store recently evaluated candidate solutions.
• The candidates stored in these structures are not eligible for generation of further candidates and

are thereby considered “Tabu” by the algorithm
• Key idea

▪ maintain the sequence of nodes already visited
- tabu lists and tabu nodes

▪ Typically there are two kinds of tabu lists, a long term memory maintaining the history through all the
exploration process as a whole and a short term memory to keep the most recently visited tabu movements.

▪ Select the best configurations that is not tabu,
i.e., has not been visited before

▪ Tabu search enhances the performance of local search by relaxing its basic rule.
▪ First, at each step worsening moves can be accepted if no improving move is available (like when

the search is stuck at a strict local minimum).
▪ In addition, prohibitions (henceforth the term tabu) are introduced to discourage the search from

coming back to previously-visited solutions.

88

Tabu Search: TS

Cost

States

From : CSC 361 - Dr. Yousef Al-Ohali

89

Tabu Search: TS
Best

90

Tabu Search: TS
Best

91

Tabu Search: TS
Best

92

Tabu Search: TS
Best

93

Tabu Search: TS
Best

94

Tabu Search: TS
Best

95

Tabu Search: TS
Best

96

Tabu Search: TS
Best

97

Tabu Search: TS
Best

98

Tabu Search: TS
Best

99

Tabu Search: TS
Best

100

Tabu Search: TS
Best

101

Tabu Search: TS
Best

102

Tabu Search: TS
Best

103

Tabu Search: TS
Best

104

Tabu Search: TS
Best

105

Tabu Search: TS
Best

106

Tabu Search: TS
Best

107

Tabu Search: TS
Best

108

Tabu Search: TS
Best

109

Tabu Search: TS
Best

110

Tabu Search: TS
Best

Advantages and Disadvantages of TS

▪ Advantages and Disadvantages of TS
▪ Advantages

▪ Can escape local optimums by picking non-improving solutions
▪ The Tabu List can be used to avoid cycles and reverting to old solutions
▪ Can be applied to both discrete and continuous solutions

▪ Disadvantages
▪ Number of iterations can be very high
▪ There are a lot of tuneable parameters in this algorithm
▪ Key issue with tabu search

▪ expensive to maintain all the visited nodes (Short-term memory only keep a small set of
recently visited nodes (tabu list)=

Evolutionary computation

▪ In computer science, evolutionary computation is a family of algorithms for global
optimization inspired by biological evolution, and the subfield of artificial intelligence and soft
computing studying these algorithms.

▪ Evolutionary computing techniques mostly involve metaheuristic optimization algorithms. Broadly
speaking, the field includes:

▪ Agent-based modeling

▪ Ant colony optimization

▪ Artificial immune systems

▪ Artificial life (also see digital organism)

▪ Cultural algorithms

▪ Differential evolution

▪ Dual-phase evolution

▪ Estimation of distribution algorithms

▪ Evolutionary algorithms

▪ Evolutionary programming

▪ Evolution strategy

▪ Gene expression programming

▪ Genetic algorithm

▪ Genetic programming

▪ Grammatical evolution

▪ Learnable evolution model

▪ Learning classifier systems

▪ Memetic algorithms

▪ Neuroevolution

▪ Particle swarm optimization

▪ Self-organization such as self-organizing
maps, competitive learning

▪ Swarm intelligence

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Global_optimization
https://en.wikipedia.org/wiki/Global_optimization
https://en.wikipedia.org/wiki/Biological_evolution
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Soft_computing
https://en.wikipedia.org/wiki/Soft_computing

Evolutionary algorithms

▪ Evolutionary algorithms are based on concepts of biological evolution. A ‘population’ of possible solutions to the
problem is first created with each solution being scored using a ‘fitness function’ that indicates how good they are.
The population evolves over time and (hopefully) identifies better solutions.

▪ Evolutionary algorithms can be seen as variants of stochastic beam search that are explicitly motivated by the
metaphor of natural selection in biology: there is a population of individuals (states), in which the fittest (highest
value) individuals produce offspring (successor states) that populate the next generation, a process called
recombination. There are endless forms of evolutionary algorithms, varying in the following ways:

▪ The size of the population.

▪ The representation of each individual.

▪ The mixing number, which is the number of parents that come together to form offspring.

▪ The selection process for selecting the individuals who will become the parents of the next generation

▪ The recombination procedure. One common approach (assuming =2), is to randomly select a crossover point to
split each of the parent strings, and recombine the parts to form two children.

▪ The mutation rate, which determines how often offspring have random mutations to their representation.

▪ The makeup of the next generation. This can be just the newly formed offspring, or it can include a few top-
scoring parents from the previous generation (a practice called elitism)

Genetic Algorithms

▪ Each state is seen as an individual in a population.
▪ A genetic algorithm applies selection and reproduction operators to an initial population
▪ The aim is to generate individuals that are most successful, according to a given fitness function.
▪ Select parents based on fitness, and “reproduce” to get the next generation (using “crossover” and

mutations)
▪ Replace the old generation with the new generation.

• Variation operators used in
Reproduction create the
necessary diversity, facilitating
novelty

• Selection reduces diversity but
pushes quality by increasing
fitness

Genetic Algorithms

▪ Before we can apply Genetic Algorithm to a problem, we
need to answer:

- How to represent an individual?

- What is the fitness function?

- How to select individuals?

- How to reproduce individuals?

Representation of states (solutions)

▪ Each state or individual is represented as a string over a finite
alphabet. It is also called chromosome which Contains genes. Each
character in the string is a gene.

116

1001011111
Solution: 607

Encoding

Chromosome:

Binary String

genes

• Possible Encodings:

• Character strings 0101 · · · 1100
• Sequences of real numbers (43.2 -33.1 · · · 0.0 89.2)
• Tuples of elements (E11 E3 E7 · · · E1 E15)
• Lists of rules (R1 R2 R3 · · · R22 R23)

• Choosing the right encoding of state configurations to strings is crucial.

8-queens puzzle encoding

▪ 8-digit strings represents 8-queens states
▪ Figure 4.6(a) shows a population of four 8-digit strings, each representing a state of the 8-queens puzzle: the c-th digit represents the row

number of the queen in column c. In (b), each state is rated by the fitness function. Higher fitness values are better, so for the 8-queens
problem we use the number of nonattacking pairs of queens, which has a value of 8*7/2=28.

Fitness Function

• Each state is rated by the evaluation function called fitness function. Fitness function should
return higher values for better states:

Fitness(X) should be greater than Fitness(Y) !!

[Fitness(x) = 1/Cost(x)]

Cost

States

X Y

Selection

▪ Selection is the stage of a genetic algorithm in which individual
genomes are chosen from a population for later breeding (using
the crossover operator).

• Methods of Selection (Genetic Algorithm)

• 1.1 Roulette Wheel Selection

• 1.2 Rank Selection

• 1.3 Steady State Selection

• 1.4 Tournament Selection

• 1.5 Elitism Selection

• 1.6 Boltzmann Selection

https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)#Methods_of_Selection_(Genetic_Algorithm)
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)#Roulette_Wheel_Selection
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)#Rank_Selection
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)#Steady_State_Selection
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)#Tournament_Selection
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)#Elitism_Selection
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)#Boltzmann_Selection

Roulette Wheel Selection

▪ In the roulette wheel selection, the probability of choosing an individual for breeding of
the next generation is proportional to its fitness, the better the fitness is, the higher
chance for that individual to be chosen. Choosing individuals can be depicted as
spinning a roulette that has as many pockets as there are individuals in the current
generation, with sizes depending on their probability.

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_parent_selection.htm

https://en.wikipedia.org/wiki/Fitness_proportionate_selection

Rank Selection

▪ Rank Selection also works with negative fitness values and is mostly used when the individuals
in the population have very close fitness values (this happens usually at the end of the run). This
leads to each individual having an almost equal share of the pie (like in case of fitness
proportionate selection) and hence each individual no matter how fit relative to each other has
an approximately same probability of getting selected as a parent. This in turn leads to a loss in
the selection pressure towards fitter individuals, causing the GA to make poor parent selections
in such situations.

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_parent_selection.htm

Cross-Over and Mutation

▪ How to reproduce individuals?
▪ Crossover, also called recombination, is a genetic operator used to combine the genetic information of two

parents to generate new offspring.
▪ The crossover of two parent strings produces offspring/children (new solutions) by swapping parts or genes of

the chromosomes.
▪ Crossover has a higher probability, typically 0.8-0.95.

One-point crossover:

A point on both parents' chromosomes is picked

randomly, and designated a 'crossover point'. Bits to

the right of that point are swapped between the two

parent chromosomes. This results in two offspring,

each carrying some genetic information from both

parents.

Two-point and k-point crossover:

In two-point crossover, two crossover points are picked

randomly from the parent chromosomes. The bits in

between the two points are swapped between the parent

organisms.

Cross-Over and Mutation
▪ Mutation is a genetic operator used to maintain genetic diversity from one

generation of a population of genetic algorithm chromosomes to the next. It
is analogous to biological mutation.

▪ Mutation is carried out by flipping some digits of a string, which generates
new solutions. This mutation probability is typically low, from 0.001 to 0.05.

▪ New solutions generated in each generation will be evaluated by their
fitness that is linked to the objective function of the optimization problem.

▪ The new solutions are selected according to their fitness—selection of the
fittest. Sometimes, in order to make sure that the best solutions remain in
the population, the best solutions are passed on to the next generation
without much change. This is called elitism.

Order changing - two numbers are selected and exchanged : (1 2 3 4 5 6 8 9 7) => (1 8 3 4 5 6 2 9 7)

Adding a small number (for real value encoding) - to selected values is added (or subtracted) a small number:

(1.29 5.68 2.86 4.11 5.55) => (1.29 5.68 2.73 4.22 5.55)

https://www.obitko.com/tutorials/genetic-algorithms/crossover-mutation.php

Bit inversion - selected bits are inverted : 11001001 => 10001001

8-queens puzzle : selection

▪ Genetic algorithms use a natural selection metaphor
▪ Resample K individuals at each step (selection) weighted by fitness function
▪ Combine by pairwise crossover operators, plus mutation to give variety

▪ Fitness function: number of non-attacking pairs of queens (min = 0, max = 8 × 7/2 = 28)
▪ The fitness values of the four states in (b) are 24, 23, 20, and 11.

▪ 24/(24+23+20+11) = 31%
▪ 23/(24+23+20+11) = 29% etc.

▪ Higher fitness values are better.

8-queens puzzle : crossover and mutation

▪ The fitness values of the four states in (b) are 24, 23, 20, and 11. The fitness scores are then normalized to probabilities,
and the resulting values are shown next to the fitness values in (b). In (c), two pairs of parents are selected, in accordance
with the probabilities in (b). Notice that one individual is selected twice and one not at all. For each selected pair, a
crossover point (dotted line) is chosen randomly. In (d), we cross over the parent strings at the crossover points, yielding
new offspring.

▪ Finally, in (e), each location in each string is subject to random mutation with a small independent probability. One digit
was mutated in the first, third, and fourth offspring. In the 8-queens problem, this corresponds to choosing a queen at
random and moving it to a random square in its column.

Example: N-Queens

▪ Crossover helps only if substrings are meaningful components
that can be reassembled into a new meaningful configuration.

127

Genetic Algorithms

Cost

States

128

Genetic Algorithms

Mutation

Cross-Over

129

Genetic Algorithms

130

Genetic Algorithms

131

Genetic Algorithms

132

Genetic Algorithms

133

Genetic Algorithms

134

Genetic Algorithms

135

Genetic Algorithms

136

Genetic Algorithms

137

Genetic Algorithms

138

Genetic Algorithms

139

Genetic Algorithms

140

Genetic Algorithms

141

Genetic Algorithms

142

Genetic Algorithms

143

Genetic Algorithms

144

Genetic Algorithms

145

Genetic Algorithms

Problem Encoding

From: CS:4420

Problem Encoding

From: CS:4420

Recombination : Similar to crossover

From: CS:4420

GA for the Traveling Salesperson Problem

From: CS:4420

GA for the Traveling Salesperson Problem

GA for the Traveling Salesperson Problem

Local search in continuous spaces

Local Search in Continuous Spaces

▪ There is a distinction between discrete and continuous environments. The most real-world
environments are continuous. A continuous action space has an infinite branching factor, and
thus can’t be handled by most of the algorithms we have covered so far (with the exception of
first-choice hill climbing and simulated annealing).

▪ Suppose we want to place three new airports anywhere in Romania, such that the sum of
squared straight-line distances from each city on the map to its nearest airport is minimized.
(See Figure 3.1 for the map of Romania.) The state space is then defined by the coordinates of
the three airports:

(x1;y1), (x2;y2), and (x3;y3).
▪ This is a six-dimensional space; we also say that states are defined by six variables.
▪ The objective function f (x) = f (x1;y1;x2;y2;x3;y3) is relatively easy to compute for any particular

state once we compute the closest cities. Let Ci be the set of cities whose closest airport (in the
state x) is airport i. Then, we have

Example: Siting airports in Romania

Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Airport locations
x = (x1,y1), (x2,y2), (x3,y3)

City locations (xc,yc)

Ca = cities closest to airport a

Objective: minimize

f(x) = a cCa
(xa - xc)

2 + (ya - yc)
2

Handling a continuous state/action space

▪ One way to deal with a continuous state space is to discretize it. For
example, instead of allowing the (xi;yi) locations to be any point in
continuous two-dimensional space, we could limit them to fixed points
on a rectangular grid with spacing of size  (delta).

1. Discretize it!
▪ Define a grid with increment  , use any of the discrete algorithms

2. Choose random perturbations to the state
a. First-choice hill-climbing: keep trying until something improves the state

b. Simulated annealing

3. Compute gradient of f(x) analytically

Finding extrema in continuous space

▪ The gradient of the objective function is a vector f(x) that gives the magnitude and direction
of the steepest slope. For our problem, we have

 Gradient vector: f(x) = (f/x1, f/y1, f/x2, …)T

 For the airports: f(x) = a cCa
(xa - xc)

2 + (ya - yc)
2

▪ In some cases, we can find a maximum by solving the equation f(x) = 0
▪ For example, with three airports, the expression for the gradient depends on what cities are

closest to each airport in the current state. This means we can compute the gradient locally
(but not globally); for example,

 f/x1 =cC1
2(x1 - xc)

▪ Given a locally correct expression for the gradient, we can perform steepest-ascent hill climbing
by updating the current state according to the gradient descent formula:

 x  x - f(x)
 where  (alpha) is a small constant often called the step size.
▪ There are huge range of algorithms for finding extrema using gradients.

▪ Many configuration and optimization problems can be formulated as local
search.

▪ Local search methods keep small number of nodes in memory. They are suitable
for problems where the solution is the goal state itself and not the path.

▪ General families of algorithms:
▪ Hill-climbing, continuous optimization
▪ Simulated annealing (and other stochastic methods)
▪ Local beam search: multiple interaction searches
▪ Genetic algorithms: break and recombine states

▪ Genetic algorithms are a kind of stochastic hill-climbing search in which a large
population of states is maintained. New states are generated by mutation and by
crossover which combines pairs of states from the population.

Many machine learning algorithms are local searches

Summary

	Slide 1: COE 4213564 Introduction to Artificial Intelligence
	Slide 2: Search in Complex Environments
	Slide 3: Iterative Improvement Methods
	Slide 4: Finding a valid final configuration or state
	Slide 5: Iterative Improvement Methods
	Slide 6: Local Search and Optimization Problems
	Slide 7: State-space landscape
	Slide 8: Exploring the Landscape
	Slide 9: Hill-climbing search
	Slide 10: Hill-climbing search
	Slide 12: Hill-climbing search
	Slide 13: The heuristic objective(cost) function
	Slide 14: Ex: Heuristic for n-queens problem
	Slide 15: Ex: Heuristic for n-queens problem
	Slide 16: Ex:
	Slide 17: Example: TSP
	Slide 18: Hill Climbing Drawbacks
	Slide 19: Trajectories, difficulties
	Slide 20: Local search
	Slide 21: Local search
	Slide 22: Local search
	Slide 23: Local search
	Slide 24: Local search
	Slide 25: Local search
	Slide 26: Hill-climbing search
	Slide 27: Global and local maxima
	Slide 28: Sideways move on the 8-queens problem
	Slide 29: The success of hill climbing
	Slide 30: argmax and argmin notation
	Slide 31: Gradient ascent / descent
	Slide 32: Gradient descent
	Slide 33: Gradient descent
	Slide 34: Gradient descent
	Slide 35: Gradient methods vs. Newton’s method
	Slide 36: Simulated annealing
	Slide 37: Real annealing: Sword
	Slide 38: Simulated Annealing(SA) intuitions
	Slide 39: Simulated Annealing
	Slide 40: Simulated Annealing
	Slide 41: Simulated Annealing
	Slide 42: Simulated Annealing
	Slide 43: Simulated Annealing
	Slide 44: Simulated Annealing
	Slide 45: Simulated Annealing
	Slide 46: Simulated Annealing
	Slide 47: Simulated Annealing
	Slide 48: Simulated Annealing
	Slide 49: Simulated Annealing
	Slide 50: Simulated Annealing
	Slide 51: Simulated Annealing
	Slide 52: Simulated Annealing
	Slide 53: Simulated Annealing
	Slide 54: Simulated Annealing
	Slide 55: Simulated Annealing
	Slide 56: Simulated Annealing
	Slide 57: Simulated Annealing
	Slide 58: Simulated Annealing
	Slide 59: Simulated Annealing
	Slide 60: Simulated Annealing
	Slide 61: Simulated Annealing
	Slide 62: Simulated annealing (SA)
	Slide 63: Simulated annealing
	Slide 64: Simulated annealing algorithm
	Slide 66: Simulated Annealing
	Slide 67: Simulated Annealing
	Slide 68: Local beam search (LBS)
	Slide 69: Local beam search (LBS)
	Slide 70: Local beam search
	Slide 71: Local Beam Search
	Slide 72: Local Beam Search
	Slide 73: Local Beam Search
	Slide 74: Local Beam Search
	Slide 75: Local Beam Search
	Slide 76: Local Beam Search
	Slide 77: Local Beam Search
	Slide 78: Local Beam Search
	Slide 79: Local Beam Search
	Slide 80: Local Beam Search
	Slide 81: Local Beam Search
	Slide 82: Local Beam Search
	Slide 83: Local Beam Search
	Slide 84: Local Beam Search
	Slide 85: Local Beam Search
	Slide 86: Local Beam Search
	Slide 87: Tabu search
	Slide 88: Tabu Search: TS
	Slide 89: Tabu Search: TS
	Slide 90: Tabu Search: TS
	Slide 91: Tabu Search: TS
	Slide 92: Tabu Search: TS
	Slide 93: Tabu Search: TS
	Slide 94: Tabu Search: TS
	Slide 95: Tabu Search: TS
	Slide 96: Tabu Search: TS
	Slide 97: Tabu Search: TS
	Slide 98: Tabu Search: TS
	Slide 99: Tabu Search: TS
	Slide 100: Tabu Search: TS
	Slide 101: Tabu Search: TS
	Slide 102: Tabu Search: TS
	Slide 103: Tabu Search: TS
	Slide 104: Tabu Search: TS
	Slide 105: Tabu Search: TS
	Slide 106: Tabu Search: TS
	Slide 107: Tabu Search: TS
	Slide 108: Tabu Search: TS
	Slide 109: Tabu Search: TS
	Slide 110: Tabu Search: TS
	Slide 111: Advantages and Disadvantages of TS
	Slide 112: Evolutionary computation
	Slide 113: Evolutionary algorithms
	Slide 114: Genetic Algorithms
	Slide 115: Genetic Algorithms
	Slide 116: Representation of states (solutions)
	Slide 117: 8-queens puzzle encoding
	Slide 118: Fitness Function
	Slide 119: Selection
	Slide 120: Roulette Wheel Selection
	Slide 121: Rank Selection
	Slide 122: Cross-Over and Mutation
	Slide 123: Cross-Over and Mutation
	Slide 124: 8-queens puzzle : selection
	Slide 125: 8-queens puzzle : crossover and mutation
	Slide 126: Example: N-Queens
	Slide 127: Genetic Algorithms
	Slide 128: Genetic Algorithms
	Slide 129: Genetic Algorithms
	Slide 130: Genetic Algorithms
	Slide 131: Genetic Algorithms
	Slide 132: Genetic Algorithms
	Slide 133: Genetic Algorithms
	Slide 134: Genetic Algorithms
	Slide 135: Genetic Algorithms
	Slide 136: Genetic Algorithms
	Slide 137: Genetic Algorithms
	Slide 138: Genetic Algorithms
	Slide 139: Genetic Algorithms
	Slide 140: Genetic Algorithms
	Slide 141: Genetic Algorithms
	Slide 142: Genetic Algorithms
	Slide 143: Genetic Algorithms
	Slide 144: Genetic Algorithms
	Slide 145: Genetic Algorithms
	Slide 146: Problem Encoding
	Slide 147: Problem Encoding
	Slide 148: Recombination : Similar to crossover
	Slide 149: GA for the Traveling Salesperson Problem
	Slide 150: GA for the Traveling Salesperson Problem
	Slide 151: GA for the Traveling Salesperson Problem
	Slide 152: Local search in continuous spaces
	Slide 153: Local Search in Continuous Spaces
	Slide 154: Example: Siting airports in Romania
	Slide 155
	Slide 156: Handling a continuous state/action space
	Slide 157: Finding extrema in continuous space
	Slide 158: Summary

