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Iterative Improvement Methods

▪ The search algorithms that we have seen so far are designed to explore 
search spaces systematically. 
▪ This systematicity is achieved by keeping one or more paths in memory and by 

recording which alternatives have been explored at each point along the path. 
▪ When a goal is found, the path to that goal also constitutes a solution to the 

problem. 

▪ The best of these methods can currently handle search spaces of up to 10100

states / ~1,000 binary variables. (where a set of variables define a state or 
configuration.)

▪ What if we have much larger search spaces?
▪ Search spaces for some real-world problems may be much larger e.g.,
▪ 1030,000 states as in certain reasoning and planning tasks
▪ State space is large/complex and keeping whole frontier in memory is impractical 

▪ Some of these problems can be solved by Iterative Improvement Methods



Finding a valid final configuration or state

▪ In many problems, the path to the goal is 
irrelevant.

▪ The goal state itself is the solution
▪ For example, in the 8-queens problem,  we care 

only about finding a valid final configuration (or 
state) of 8 queens.

▪ A set of variables define a state or configuration. A 
valid configuration or state is defined by domains 
for every variable and constraints among variables.  

• The eight queens puzzle is the 

problem of placing eight chess 

queens on an 8×8 chessboard so 

that no two queens threaten each 

other. 

• The eight queens puzzle has 92 

distinct solutions. 

• If solutions that differ only by the 

symmetry operations of rotation and 

reflection of the board are counted 

as one, the puzzle has 12 solutions. 



Iterative Improvement Methods

▪ In many optimization problems the goal state itself is the solution
▪ The state space is a set of complete configurations
▪ Search is about 

▪ finding the optimal configuration (as in TSP) or 
▪ just a feasible configuration (as in scheduling problems, timetable)

▪ In such cases, one can use iterative improvement, or local search methods. 
▪ These methods are suitable for problems in which all that matters is the solution 

state, not the path cost to reach it.
▪ An evaluation or objective function h must be available that measures the quality of 

each state
▪ Main Idea: Start with a random initial configuration and make small, local changes

to it that improve its quality.
▪ Many important applications : integrated-circuit design, factory floor layout, job 

shop scheduling, automatic programming, telecommunications network 
optimization, crop planning, and portfolio management.



Local Search and Optimization Problems

▪ Local search algorithms operate by searching from a start state to 
neighboring states, without keeping track of the paths, nor the set of states 
that have been reached. 

▪ Two key advantages: 
▪ they use very little memory; and 
▪ they can often find reasonable solutions in large or infinite state spaces for which 

systematic algorithms are unsuitable.

▪ They are not systematic—they might never explore a portion of the search 
space where a solution actually resides.

▪ Local search algorithms can also solve optimization problems, in which the 
aim is to find the best state according to an objective function.



State-space landscape

▪ To understand local search, consider the 
states of a problem laid out in a state-space 
landscape, as shown in Figure 4.1. Local 
search algorithms explore this landscape. 

▪ Each point (state) in the landscape has an 
“elevation” defined by the value of the 
objective function. 
▪ If elevation corresponds to an objective 

function,  then the aim is to find the highest 
peak—a global maximum—and we call the 
process hill climbing. 

▪ If elevation corresponds to cost in continuous 
space, then the aim is to find the lowest 
valley—a global minimum—and we call it 
gradient descent.

▪ A complete local search algorithm always 
finds a goal if one exists;

▪ An optimal algorithm always finds a global 
minimum/maximum

▪ Problem: depending on initial state, can get 
stuck in local maxima/minima



Exploring the Landscape

▪ Local Maxima: peaks that 
arenʼt the highest point in the 
space 

▪ Plateaus: the space has a 
broad flat region that gives the 
search algorithm no direction 
(random walk) 

▪ Ridges: flat like a plateau, but 
with drop-offs to the sides; 
steps to the North, East, South 
and West may go down, but a 
step to the NW may go up. 



Hill-climbing search

▪ Simple, general idea:
▪ Start wherever

▪ Repeat: move to the best neighboring state

▪ If no neighbors better than current, quit



Hill-climbing search



Hill-climbing search

▪ It is simply a loop that continually moves in the direction of increasing 
value—that is, uphill. It terminates when it reaches a “peak” where no 
neighbor has a higher value. 

▪ The algorithm does not maintain a search tree, so the data structure for the 
current node need only record the state and the value of the objective 
function. 

▪ Hill climbing does not look ahead beyond the immediate neighbors of the 
current state. (This resembles trying to find the top of Mount Everest in a 
thick fog while suffering from amnesia.)

▪ Hill climbing is sometimes called greedy local search because it grabs a good 
neighbor state without thinking ahead about where to go next.



The heuristic objective(cost) function

▪ An evaluation or objective function h must be 
available that measures the quality of each state

▪ Main Idea: Start with a random initial 
configuration and make small, local changes to it 
that improve its quality.

▪ Ideally, the evaluation function h should be 
monotonic: the closer a state to an optimal goal 
state the better its h-value.

▪ Each state can be seen as a point on a surface.
▪ The search consists in moving on the surface, 

looking for its highest peaks: the optimal 
solutions.

▪ Similar to Greedy search in that it uses h, but 
does not allow backtracking or jumping to an 
alternative path since it doesnʼt “remember” 
where it has been.



Ex: Heuristic for n-queens problem

▪ Goal: n queens on board with no conflicts, i.e., no queen attacking another
▪ Put n queens on an n × n board with no two queens on the same row, column, or diagonal
▪ States: n queens on board, one per column
▪ Actions: move a queen in its column
▪ Heuristic value function h: number of conflicts (the number of pairs of queens that are attacking each other; this will 

be zero only for solutions.)
▪ Strategy: Move a queen to reduce number of conflicts



Ex: Heuristic for n-queens problem



Ex: 



Example: TSP

▪ Travelling Salesperson Problem (TSP) : Given a list of cities and the distances between each pair of cities, what 
is the shortest possible route that visits each city exactly once and returns to the origin city?" It is an NP-hard 
problem in combinatorial optimization, important in theoretical computer science and operations research.

▪ Pairwise exchange method: The pairwise exchange or 2-opt technique involves iteratively removing two edges 
and replacing these with two different edges that reconnect the fragments created by edge removal into a new 
and shorter tour. 

▪ h = length of the tour
▪ Strategy: Start with any complete tour, perform pairwise exchanges



Hill Climbing Drawbacks 

Local maxima

Plateaus

18

Diagonal ridges: 
Figure 4.4 Illustration of why ridges cause 

difficulties for hill climbing. The grid of 

states (dark circles) is superimposed on a 

ridge rising from left to right, creating a 

sequence of local maxima that are not 

directly connected to each other. From 

each local maximum, all the available 

actions point downhill.

It is a greedy algorithm that often perform quite well. Unfortunately, hill climbing can get stuck for any of the following 

reasons: Local maxima, Ridges (a sequence of local maxima), Plateaus (a flat area of the state-space landscape).



Trajectories, difficulties 

19



20

Local search

Cost

States

• local search can get 
stuck on a local 
maximum/minimum 
and not find the 
optimal solution

From : CSC 361 - Dr. Yousef Al-Ohali
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Local search
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Local search

Best

Optimal

Solution



Hill-climbing search

▪ It is a greedy algorithm that often perform quite well. Hill climbing can make 
rapid progress toward a solution because it is usually quite easy to improve a 
bad state.

▪ Unfortunately, hill climbing can get stuck for any of the following reasons: Local 
maxima, Ridges (a sequence of local maxima), Plateaus (a flat area of the state-
space landscape).

▪ How could we solve more problems?
▪ One answer is to keep going when we reach a plateau—to allow a sideways move in the 

hope that the plateau is really a shoulder, from which progress is possible.
▪ Stochastic hill climbing chooses at random from among the uphill moves; the probability 

of selection can vary with the steepness of the uphill move.
▪ First-choice hill climbing implements stochastic hill climbing by generating successors 

randomly until one is generated that is better than the current state.
▪ Another variant is random-restart hill climbing, which adopts the adage, “If at first you 

don’t succeed, try, try again.” It conducts a series of hill-climbing searches from 
randomly generated initial states, until a goal is found.



Global and local maxima

- Random-restart hill climbing overcomes local maxima—trivially complete (find global optimum)

- Random sideways moves escape from shoulders but they may loop forever on flat maxima

• A plateau is a flat area of the 

state-space landscape. It can 

be a flat local maximum, from 

which no uphill exit exists, or a 

shoulder, from which progress 

is possible.

• A hill-climbing search might 

get lost on the plateau.

• Random sideways moves 

can escape from shoulders 

but they loop forever on flat 

maxima.



Sideways move on the 8-queens problem

▪ Starting from a randomly generated 8-
queens state, steepest-ascent hill 
climbing gets stuck 86% of the time, 
solving only 14% of problem instances.

▪ We could allow up to, say, 100 
consecutive sideways moves in the 8-
queens problem. This raises the 
percentage of problem instances solved 
by hill climbing from 14% to 94%.

▪ Success comes at a cost: the algorithm 
averages roughly 21 steps for each 
successful instance and 64 for each 
failure.



The success of hill climbing

▪ The success of hill climbing depends very much on the shape of the 
state-space landscape: if there are few local maxima and plateaux, 
random-restart hill climbing will find a good solution very quickly. 

▪ On the other hand, many real problems have a landscape that looks 
more like a widely scattered family of balding porcupines on a flat 
floor

▪ NP-hard problems typically have an exponential number of local 
maxima to get stuck on. 

▪ Despite this, a reasonably good local maximum can often be found 
after a small number of restarts.



argmax and argmin notation

▪ The argmax and argmin concept is common in many AI and 
machine learning algorithms

▪ See argmax on Wikipedia (argmin is similar)

▪ Argmaxx f(x) finds the value of x for which f(x) is largest

https://en.wikipedia.org/wiki/Arg_max


Gradient ascent / descent
▪ Gradient descent procedure for finding the argx min f(x)

▪ choose initial x0 randomly

▪ repeat
▪ xi+1 ← xi – η f '(xi)

▪ until the sequence x0, x1, …, xi, xi+1 converges

▪ Step size η (eta) is small (perhaps 0.1 or 0.05)

▪ Often used in machine learning algorithms

Images from http://en.wikipedia.org/wiki/Gradient_descent

https://en.wikipedia.org/wiki/Gradient_descent


Gradient descent



* Assume we have some cost-function: 
and we want minimize over continuous variables x1,x2,..,xn

1. Compute the gradient :

2. Take a small step downhill in the direction of the gradient:

3. Check if

4. If true then accept move, if not “reject”. 

5. Repeat.

Gradient = the most direct direction up-hill in the objective 

(cost) function, so its negative minimizes the cost function. 

Gradient descent
Hill-climbing in continuous spaces

(or, Armijo rule, etc.)

(decrease step size, etc.)

http://upload.wikimedia.org/wikipedia/commons/d/db/Gradient_ascent_(contour).png


▪ How do I determine the gradient?

▪ Derive formula using multivariate calculus.

▪ Ask a mathematician or a domain expert.

▪ Do a literature search.

▪ Variations of gradient descent can improve 
performance for this or that special case.

▪ See Numerical Recipes in C (and in other languages) by 
Press, Teukolsky, Vetterling, and Flannery.

▪ Simulated Annealing, Linear Programming too

▪ Works well in smooth spaces; poorly in rough.

Gradient descent
Hill-climbing in continuous spaces



Gradient methods vs. Newton’s method

▪ Gradient descent algorithms find local minima by 
moving along the direction of steepest descent
while Newton's method takes into account 
curvature information and thereby often 
improves convergence.

▪ A reminder of Newton’s method from Calculus:
xi+1 ← xi – η f '(xi) / f ''(xi) 

▪ Newton’s method uses 2nd order information 
(e.g., 2nd derivative) to take a faster route to a 
minimum

▪ Second-order info. is more expensive to compute
▪ Does not always converge; sometimes unstable
▪ If converges, usually very fast
▪ Works well for smooth, non-pathological 

functions, linearization accurate
▪ Works poorly for wiggly, ill-behaved functions

▪ See gradient descent

Contour lines of a function

Gradient descent (green)

Newton’s method (red)
Image from http://en.wikipedia.org/wiki/Newton's_method_in_optimization

https://en.wikipedia.org/wiki/Gradient_descent


Simulated annealing

▪ A hill-climbing algorithm that never makes “downhill” moves toward states 
with lower value (or higher cost) is always vulnerable to getting stuck in a 
local maximum. In contrast, a purely random walk that moves to a 
successor state without concern for the value will eventually stumble upon 
the global maximum but will be extremely inefficient. 

▪ Therefore, it seems reasonable to try to combine hill climbing with a 
random walk in a way that yields both efficiency and completeness.
Simulated annealing is such an algorithm.

▪ In metallurgy, annealing is a technique involving heating & controlled 
cooling of a material to increase size of its crystals & reduce defects 

▪ Heat causes atoms to become unstuck from initial positions (local minima 
of internal energy) and wander randomly through states of higher energy

▪ Slow cooling gives them more chances of finding configurations with lower 
internal energy than initial one
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Real annealing: Sword 

▪ The worker heats the metal, then slowly cools it as he hammers the blade into 
shape.  
▪ If he cools the blade too quickly the metal will form patches of different composition;

▪ If the metal is cooled slowly while it is shaped, the constituent metals will form a uniform 
alloy.



Simulated Annealing(SA) intuitions

▪ Combines hill climbing (for efficiency) with random 
walk (for completeness)

▪ Analogy: getting a ping-pong ball into the deepest 
depression in a bumpy surface
▪ Shake the surface to get the ball out of local minima
▪ Don’t shake too hard to dislodge it from global 

minimum

▪ Simulated annealing:
▪ Start shaking hard (high temperature) and gradually 

reduce shaking intensity (lower temperature)
▪ Escape local minima by allowing some “bad”moves
▪ But gradually reduce their size and frequency

▪ The simulated-annealing solution is to start by 
shaking hard (i.e., at a high temperature) and then 
gradually reduce the intensity of the shaking (i.e., 
lower the temperature).

https://en.wikipedia.org/wiki/Random_walk
https://en.wikipedia.org/wiki/Random_walk
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Simulated Annealing

Cost

States

Best

• SA can avoid becoming 
trapped at local minima

• SA is a stochastic 
algorithm involving 
asymptotic convergence 
and allowing random 
movements in the 
searched neighborhood 
in order to escape local 
minima

From : CSC 361 - Dr. Yousef Al-Ohali
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Simulated annealing (SA)

▪ SA can avoid becoming trapped at local minima
▪ SA is a stochastic algorithm involving asymptotic 

convergence and allowing random movements in 
the searched neighborhood in order to escape 
local minima

▪ SA uses a control parameter T, which by analogy 
with the original application, is known as the 
system temperature

▪ The higher the temperature, the higher 
probability of accepting a worse solution.

▪ Typically, T decreases as the algorithm runs 
longer. Theoretically this algorithm always finds 
the global optimum but it can run very slow for 
some problems and in practice it would be a 
problem as to how to decide the rate at which to 
decrease T.

▪ T starts out high and gradually decreases toward 0



Simulated annealing

▪ The overall structure of the simulated-annealing algorithm (Figure 4.5) is 
similar to hill climbing. Instead of picking the best move, however, it picks a 
random move. 

▪ If the move improves the situation, it is always accepted. Otherwise, the 
algorithm accepts the move with some probability less than 1. 

▪ The probability decreases exponentially with the  “badness” of the move—the 
amount ΔE by which the evaluation is worsened.

▪ A “bad” move from A to B is accepted with a probability
-(f(B)-f(A)/T)e

▪ The higher the temperature, the more likely it is that a bad move can be made
▪ As T tends to zero, probability tends to zero, and SA becomes more like hill 

climbing
▪ If T lowered slowly enough, SA is complete and admissible



Simulated annealing algorithm 



Simulated Annealing

▪ Widely used in VLSI layout, airline scheduling, etc.
▪ Often works very well in practice

▪ But usually VERY VERY slow

▪ One can prove: 
▪ If T decreases slowly enough, then simulated annealing search will find a global 

optimum with probability approaching 1
▪ Unfortunately this can take a VERY VERY long time
▪ Note: in any finite search space, random guessing also will find a global optimum with 

probability approaching 1
▪ So, ultimately this is a very weak claim

▪ Theoretical guarantee (proof):
▪ Stationary distribution (Boltzmann): P(x)  eE(x)/T

▪ If T decreased slowly enough, will converge to optimal state!
▪ Proof sketch 

▪ Consider two adjacent states x, y with E(y) > E(x) [high is good]
▪ Assume x→y and y→x and outdegrees D(x) = D(y) = D
▪ Let P(x), P(y) be the equilibrium occupancy probabilities at T
▪ Let P(x→y) be the probability that state x transitions to state y



Simulated Annealing

▪ Is this convergence an interesting guarantee?

▪ Sounds like magic, but reality is reality:
▪ The more downhill steps you need to escape a local optimum, 

the less likely you are to ever make them all in a row
▪ “Slowly enough” may mean exponentially slowly
▪ Random restart hillclimbing also converges to optimal state…

▪ Simulated annealing and its relatives are a key 
workhorse in VLSI layout and other optimal 
configuration problems



Local beam search (LBS)

▪ Basic idea:

▪ K copies of a local search algorithm, initialized randomly

▪ For each iteration

▪ Generate ALL successors from K current states

▪ Choose best K of these to be the new current states

▪ This is similar to k searches running in parallel! 

▪ LBS≠ running k random restarts in parallel instead of sequence.

Or, K chosen randomly with 

a bias towards good ones



Local beam search (LBS)

▪ Idea: 
▪ Unlike Hill Climbing, keep k states instead of just 1

▪ Algorithm:
▪ Local Beam Search keeps track of k states rather than just one.
▪ It starts with k randomly generated states.
▪ At each step, all the successors of all the states are generated.
▪ If any one is a goal, the algorithm halts, otherwise it selects the k best 

successors from the complete list and repeats.



a1 b1 k1… Create k random initial states

… Generate their children

a2 b2 k2… Select the k best children

… Repeat …

Local beam search
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Local Beam Search

Cost

States

From : CSC 361 - Dr. Yousef Al-Ohali
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Local Beam Search



Tabu search

▪ Tabu search is a meta-heuristic optimization technique, which owes its name to its memory 
structures, used to store recently evaluated candidate solutions. 
• The candidates stored in these structures are not eligible for generation of further candidates and 

are thereby considered “Tabu” by the algorithm
• Key idea

▪ maintain the sequence of nodes already visited
- tabu lists and tabu nodes

▪ Typically there are two kinds of tabu lists, a long term memory maintaining the history through all the 
exploration process as a whole and a short term memory to keep the most recently visited tabu movements. 

▪ Select the best configurations that is not tabu,
i.e., has not been visited before

▪ Tabu search enhances the performance of local search by relaxing its basic rule. 
▪ First, at each step worsening moves can be accepted if no improving move is available (like when 

the search is stuck at a strict local minimum). 
▪ In addition, prohibitions (henceforth the term tabu) are introduced to discourage the search from 

coming back to previously-visited solutions.
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Tabu Search: TS

Cost

States

From : CSC 361 - Dr. Yousef Al-Ohali
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Advantages and Disadvantages of TS

▪ Advantages and Disadvantages of TS
▪ Advantages

▪ Can escape local optimums by picking non-improving solutions
▪ The Tabu List can be used to avoid cycles and reverting to old solutions
▪ Can be applied to both discrete and continuous solutions

▪ Disadvantages
▪ Number of iterations can be very high
▪ There are a lot of tuneable parameters in this algorithm
▪ Key issue with tabu search

▪ expensive to maintain all the visited nodes (Short-term memory only keep a small set of 
recently visited nodes (tabu list)=



Evolutionary computation

▪ In computer science, evolutionary computation is a family of algorithms for global 
optimization inspired by biological evolution, and the subfield of artificial intelligence and soft 
computing studying these algorithms.

▪ Evolutionary computing techniques mostly involve metaheuristic optimization algorithms. Broadly 
speaking, the field includes:

▪ Agent-based modeling

▪ Ant colony optimization

▪ Artificial immune systems

▪ Artificial life (also see digital organism)

▪ Cultural algorithms

▪ Differential evolution

▪ Dual-phase evolution

▪ Estimation of distribution algorithms

▪ Evolutionary algorithms

▪ Evolutionary programming

▪ Evolution strategy

▪ Gene expression programming

▪ Genetic algorithm

▪ Genetic programming

▪ Grammatical evolution

▪ Learnable evolution model

▪ Learning classifier systems

▪ Memetic algorithms

▪ Neuroevolution

▪ Particle swarm optimization

▪ Self-organization such as self-organizing 
maps, competitive learning

▪ Swarm intelligence

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Global_optimization
https://en.wikipedia.org/wiki/Global_optimization
https://en.wikipedia.org/wiki/Biological_evolution
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Soft_computing
https://en.wikipedia.org/wiki/Soft_computing


Evolutionary algorithms

▪ Evolutionary algorithms are based on concepts of biological evolution. A ‘population’ of possible solutions to the 
problem is first created with each solution being scored using a ‘fitness function’ that indicates how good they are. 
The population evolves over time and (hopefully) identifies better solutions.

▪ Evolutionary algorithms can be seen as variants of stochastic beam search that are explicitly motivated by the 
metaphor of natural selection in biology: there is a population of individuals (states), in which the fittest (highest 
value) individuals produce offspring (successor states) that populate the next generation, a process called 
recombination. There are endless forms of evolutionary algorithms, varying in the following ways:

▪ The size of the population.

▪ The representation of each individual.

▪ The mixing number,  which is the number of parents that come together to form offspring.

▪ The selection process for selecting the individuals who will become the parents of the next generation

▪ The recombination procedure. One common approach (assuming =2), is to randomly select a crossover point to 
split each of the parent strings, and recombine the parts to form two children.

▪ The mutation rate, which determines how often offspring have random mutations to their representation.

▪ The makeup of the next generation. This can be just the newly formed offspring, or it can include a few top-
scoring parents from the previous generation (a practice called elitism)



Genetic Algorithms

▪ Each state is seen as an individual in a population.
▪ A genetic algorithm applies selection and reproduction operators to an initial population
▪ The aim is to generate individuals that are most successful, according to a given fitness function.
▪ Select parents based on fitness, and “reproduce” to get the next generation (using “crossover” and 

mutations)
▪ Replace the old generation with the new generation.

• Variation operators used in 
Reproduction create the 
necessary diversity, facilitating 
novelty

• Selection reduces diversity but 
pushes quality by increasing 
fitness



Genetic Algorithms

▪ Before we can apply Genetic Algorithm to a problem, we
need to answer:

- How to represent an individual?

- What is the fitness function?

- How to select individuals?

- How to reproduce individuals?



Representation of states (solutions)

▪ Each state or individual is represented as a string over a finite
alphabet. It is also called chromosome which Contains genes. Each 
character in the string is a gene.

116

1001011111
Solution: 607 

Encoding

Chromosome:

Binary String

genes

• Possible Encodings:

• Character strings 0101 · · · 1100
• Sequences of real numbers (43.2 -33.1 · · · 0.0 89.2)
• Tuples of elements (E11 E3 E7 · · · E1 E15)
• Lists of rules (R1 R2 R3 · · · R22 R23)

• Choosing the right encoding of state configurations to strings is crucial.



8-queens puzzle encoding

▪ 8-digit strings represents 8-queens states
▪ Figure 4.6(a) shows a population of four 8-digit strings, each representing a state of the 8-queens puzzle: the c-th digit represents the row 

number of the queen in column c. In (b), each state is rated by the fitness function. Higher fitness values are better, so for the 8-queens 
problem we use the number of nonattacking pairs of queens, which has a value of 8*7/2=28. 



Fitness Function

• Each state is rated by the evaluation function called fitness function. Fitness function should
return higher values for better states:

Fitness(X) should be greater than Fitness(Y) !! 

[Fitness(x) = 1/Cost(x)]

Cost

States

X Y



Selection

▪ Selection is the stage of a genetic algorithm in which individual 
genomes are chosen from a population for later breeding (using 
the crossover operator).

• Methods of Selection (Genetic Algorithm)

• 1.1 Roulette Wheel Selection

• 1.2 Rank Selection

• 1.3 Steady State Selection

• 1.4 Tournament Selection

• 1.5 Elitism Selection

• 1.6 Boltzmann Selection

https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)#Methods_of_Selection_(Genetic_Algorithm)
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)#Roulette_Wheel_Selection
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)#Rank_Selection
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)#Steady_State_Selection
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)#Tournament_Selection
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)#Elitism_Selection
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)#Boltzmann_Selection


Roulette Wheel Selection

▪ In the roulette wheel selection, the probability of choosing an individual for breeding of 
the next generation is proportional to its fitness, the better the fitness is, the higher 
chance for that individual to be chosen. Choosing individuals can be depicted as 
spinning a roulette that has as many pockets as there are individuals in the current 
generation, with sizes depending on their probability.

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_parent_selection.htm

https://en.wikipedia.org/wiki/Fitness_proportionate_selection


Rank Selection

▪ Rank Selection also works with negative fitness values and is mostly used when the individuals 
in the population have very close fitness values (this happens usually at the end of the run). This 
leads to each individual having an almost equal share of the pie (like in case of fitness 
proportionate selection) and hence each individual no matter how fit relative to each other has 
an approximately same probability of getting selected as a parent. This in turn leads to a loss in 
the selection pressure towards fitter individuals, causing the GA to make poor parent selections 
in such situations.

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_parent_selection.htm



Cross-Over and Mutation

▪ How to reproduce individuals?
▪ Crossover, also called recombination, is a genetic operator used to combine the genetic information of two 

parents to generate new offspring.
▪ The crossover of two parent strings produces offspring/children (new solutions) by swapping parts or genes of 

the chromosomes.
▪ Crossover has a higher probability, typically 0.8-0.95.

One-point crossover:

A point on both parents' chromosomes is picked 

randomly, and designated a 'crossover point'. Bits to 

the right of that point are swapped between the two 

parent chromosomes. This results in two offspring, 

each carrying some genetic information from both 

parents.

Two-point and k-point crossover:

In two-point crossover, two crossover points are picked 

randomly from the parent chromosomes. The bits in 

between the two points are swapped between the parent 

organisms.



Cross-Over and Mutation
▪ Mutation is a genetic operator used to maintain genetic diversity from one 

generation of a population of genetic algorithm chromosomes to the next. It 
is analogous to biological mutation.

▪ Mutation is carried out by flipping some digits of a string, which generates 
new solutions. This mutation probability is typically low, from 0.001 to 0.05. 

▪ New solutions generated in each generation will be evaluated by their 
fitness that is linked to the objective function of the optimization problem. 

▪ The new solutions are selected according to their fitness—selection of the 
fittest. Sometimes, in order to make sure that the best solutions remain in 
the population, the best solutions are passed on to the next generation 
without much change. This is called elitism.

Order changing - two numbers are selected and exchanged : (1 2 3 4 5 6 8 9 7) => (1 8 3 4 5 6 2 9 7)

Adding a small number (for real value encoding) - to selected values is added (or subtracted) a small number:

(1.29 5.68 2.86 4.11 5.55) => (1.29 5.68 2.73 4.22 5.55)

https://www.obitko.com/tutorials/genetic-algorithms/crossover-mutation.php

Bit inversion - selected bits are inverted : 11001001 => 10001001



8-queens puzzle : selection

▪ Genetic algorithms use a natural selection metaphor
▪ Resample K individuals at each step (selection) weighted by fitness function
▪ Combine by pairwise crossover operators, plus mutation to give variety

▪ Fitness function: number of non-attacking pairs of queens (min = 0, max = 8 × 7/2 = 28)
▪ The fitness values of the four states in (b) are 24, 23, 20, and 11. 

▪ 24/(24+23+20+11) = 31%
▪ 23/(24+23+20+11) = 29% etc.

▪ Higher fitness values are better.



8-queens puzzle : crossover and mutation

▪ The fitness values of the four states in (b) are 24, 23, 20, and 11. The fitness scores are then normalized to probabilities, 
and the resulting values are shown next to the fitness values in (b).  In (c), two pairs of parents are selected, in accordance 
with the probabilities in (b). Notice that one individual is selected twice and one not at all. For each selected pair, a 
crossover point (dotted line) is chosen randomly. In (d), we cross over the parent strings at the crossover points, yielding 
new offspring.

▪ Finally, in (e), each location in each string is subject to random mutation with a small independent probability. One digit 
was mutated in the first, third, and fourth offspring. In the 8-queens problem, this corresponds to choosing a queen at 
random and moving it to a random square in its column.



Example: N-Queens

▪ Crossover helps only if substrings are meaningful components 
that can be reassembled into a new meaningful configuration.
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Problem Encoding

From: CS:4420



Problem Encoding

From: CS:4420



Recombination : Similar to crossover

From: CS:4420



GA for the Traveling Salesperson Problem

From: CS:4420
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GA for the Traveling Salesperson Problem
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Local Search in Continuous Spaces

▪ There is a distinction between discrete and continuous environments. The most real-world 
environments are continuous. A continuous action space has an infinite branching factor, and 
thus can’t be handled by most of the algorithms we have covered so far (with the exception of 
first-choice hill climbing and simulated annealing).

▪ Suppose we want to place three new airports anywhere in Romania, such that the sum of 
squared straight-line distances from each city on the map to its nearest airport is minimized. 
(See Figure 3.1 for the map of Romania.) The state space is then defined by the coordinates of 
the three airports: 

(x1;y1), (x2;y2), and (x3;y3).
▪ This is a six-dimensional space; we also say that states are defined by six variables.
▪ The objective function f (x) = f (x1;y1;x2;y2;x3;y3) is relatively easy to compute for any particular 

state once we compute the closest cities. Let Ci be the set of cities whose closest airport (in the 
state x) is airport i. Then, we have



Example: Siting airports in Romania

Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Airport locations 
x = (x1,y1), (x2,y2), (x3,y3)

City locations (xc,yc)

Ca = cities closest to airport a

Objective: minimize

f(x) = a cCa
(xa - xc)

2 + (ya - yc)
2





Handling a continuous state/action space

▪ One way to deal with a continuous state space is to discretize it. For 
example, instead of allowing the (xi;yi) locations to be any point in 
continuous two-dimensional space, we could limit them to fixed points 
on a rectangular grid with spacing of size  (delta).

1. Discretize it!
▪ Define a grid with increment  , use any of the discrete algorithms

2. Choose random perturbations to the state
a. First-choice hill-climbing: keep trying until something improves the state

b. Simulated annealing 

3. Compute gradient of f(x) analytically



Finding extrema in continuous space

▪ The gradient of the objective function is a vector f(x) that gives the magnitude and direction 
of the steepest slope. For our problem, we have

 Gradient vector: f(x) = (f/x1, f/y1, f/x2, …)T

               For the airports: f(x) = a cCa
(xa - xc)

2 + (ya - yc)
2

▪ In some cases, we can find a maximum by solving the equation f(x) = 0
▪ For example, with three airports, the expression for the gradient depends on what cities are 

closest to each airport in the current state. This means we can compute the gradient locally 
(but not globally); for example,

                                 f/x1 =cC1
2(x1 - xc)

▪ Given a locally correct expression for the gradient, we can perform steepest-ascent hill climbing 
by updating the current state according to the gradient descent formula: 

                 x  x - f(x)
              where  (alpha) is a small constant often called the step size.
▪ There are huge range of algorithms for finding extrema using gradients.



▪ Many configuration and optimization problems can be formulated as local 
search.

▪ Local search methods keep small number of nodes in memory. They are suitable
for problems where the solution is the goal state itself and not the path.

▪ General families of algorithms:
▪ Hill-climbing, continuous optimization
▪ Simulated annealing (and other stochastic methods)
▪ Local beam search: multiple interaction searches
▪ Genetic algorithms: break and recombine states

▪ Genetic algorithms are a kind of stochastic hill-climbing search in which a large 
population of states is maintained. New states are generated by mutation and by 
crossover which combines pairs of states from the population. 

Many machine learning algorithms are local searches

Summary
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