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What is Search For?

▪ Assumptions about the world: a single agent, deterministic 
actions, fully observed state, discrete state space

▪ Planning: sequences of actions
▪ The path to the goal is the important thing

▪ Paths have various costs, depths

▪ Heuristics give problem-specific guidance

▪ Identification: assignments to variables
▪ The goal itself is important, not the path

▪ All paths at the same depth (for some formulations)

▪ CSPs are a specialized class of identification problems where we assign 
values to variables while respecting certain constraints



Constraint Satisfaction Problems



Constraint Satisfaction Problems

▪ Constraint satisfaction problems (CSPs) are mathematical questions defined as a set 
of objects whose state must satisfy a number of constraints or limitations.



Defining Constraint Satisfaction Problems

Chapter 5 6

A constraint satisfaction problem (CSP) consists of three components, X, D, and 
C:
• X is a set of variables, {X1 ….. Xn}.
• D is a set of domains, {D1, …. , Dn}, one for each variable
• C is a set of constraints that specify allowable combination of values

CSPs deal with assignments of values to variables. 
• A complete assignment is one in which every variable is assigned a value, and a 

solution to a CSP is a consistent, complete assignment.
• A partial assignment is one that leaves some variables unassigned.
• Partial solution is a partial assignment that is consistent

© 2022 Pearson Education Ltd.



Constraint satisfaction problems (CSPs)

Chapter 5 7

Standard search problem:
state is a “black box”—any old data structure that 

supports goal test, eval, successor

CSP:
state is defined by variables X i with values from domain Di

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power 
than standard search algorithms

© 2022 Pearson Education Ltd.



Constraint satisfaction problems (CSPs)

From: UBC CS 322 – CSP





Possible Worlds



Varieties of CSPs and Constraints



Varieties of CSPs

▪ Discrete Variables
▪ Finite domains

▪ Size d means O(dn) complete assignments

▪ E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

▪ Infinite domains (integers, strings, etc.)

▪ E.g., job scheduling, variables are start/end times for each job

▪ Linear constraints solvable, nonlinear undecidable

▪ Continuous variables
▪ E.g., start/end times for Hubble Telescope observations

▪ Linear constraints solvable in polynomial time by LP methods 
(see cs170 for a bit of this theory)



Varieties of Constraints

▪ Varieties of Constraints
▪ Unary constraints involve a single variable (equivalent to 

reducing domains), e.g.:

▪ Binary constraints involve pairs of variables, e.g.:

▪ Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

▪ Preferences (soft constraints):
▪ E.g., red is better than green
▪ Often representable by a cost for each variable assignment
▪ Gives constrained optimization problems
▪ (We’ll ignore these until we get to Bayes’ nets)



Constraints

From: UBC CS 322 – CSP



Constraints

From: UBC CS 322 – CSP



Scope of a constraint

From: UBC CS 322 – CSP



Solving Constraint Satisfaction Problems



CSP Examples

Example problem: Map coloring

• We are looking at a map of 
Australia showing each of its 
states and territories

• We are given the task of 
coloring each region either red, 
green, or blue in such a way that 
no two neighboring regions 
have the same color. 

• To formulate this as a CSP, we 
define the variables to be the 
regions:

       X = {WA,NT,Q,NSW,V,SA,T}



Example: Map Coloring

▪ Variables:

▪ Domains:

▪ Constraints: adjacent regions must have different 
colors

▪ Solutions are assignments satisfying all 
constraints, e.g.:

Implicit:

Explicit:



Example: N-Queens

▪ Formulation 1:

▪ Variables:

▪ Domains:

▪ Constraints

Queens are not in the same row (No (1,1)),

Queens are not in the same columns

Queens are not in the same diagonals

Queens are not in the same oppsite diagonals

Queens can not attack/threaten each other



Example: N-Queens

▪ Formulation 2:

▪ Variables:

▪ Domains:

▪ Constraints:

Implicit:

Explicit:

Each row will one queen.

Assign a column to each queen.



Constraint Graphs



Constraint Graphs

▪ Binary CSP: each constraint relates (at most) two 
variables

▪ Binary constraint graph: nodes are variables, arcs 
show constraints

▪ General-purpose CSP algorithms use the graph 
structure to speed up search. E.g., Tasmania is an 
independent subproblem!

[Demo: CSP applet (made available by aispace.org) -- n-queens]



Example: cryptarithmetic puzzles



Example: Cryptarithmetic

▪ Variables:

▪ Domains:

▪ Constraints:
- Each letter in a cryptarithmetic puzzle represents a different digit. For the case in Figure 5.2(a), 
this would be represented as the global constraint Alldiff (F;T;U;W;R;O). 

- The addition constraints on the four columns of the puzzle can be written as the following n-ary
constraints:

O+O = R+10 C1

C1+W +W =U +10 C2

C2+T +T = O+10 C3

C3 = F ;
where C1, C2, and C3 are auxiliary variables representing the digit carried over into the tens, 
hundreds, or thousands column.

F T U W R O C1 C2 C3

C3 C2 C1



Example: Sudoku

▪ Variables:

▪ Each (open) square

▪ Domains:

▪ {1,2,…,9}

▪ Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of 
pairwise inequality 
constraints)



Real-World CSPs

▪ Scheduling problems: e.g., when can we all meet?

▪ Timetabling problems: e.g., which class is offered when and where?

▪ Assignment problems: e.g., who teaches what class

▪ Hardware configuration

▪ Transportation scheduling

▪ Factory scheduling

▪ Circuit layout

▪ Fault diagnosis

▪ … lots more!

▪ Many real-world problems involve real-valued variables…



Solving CSPs



Solving Constraint Satisfaction Problems (CSPs)

▪ A CSP can be solved using generate-and-test paradigm (GT) that 
systematically generates each possible value assignment and then it 
tests to see if it satisfies all the constraints. 

▪ A more efficient method uses the backtracking paradigm (BT) that is 
the most common algorithm for performing systematic search. 
Backtracking incrementally attempts to extend a partial solution 
toward a complete solution, by repeatedly choosing a value for 
another variable.

▪ Two methods:
▪ Generate & Test
▪ Graph search with backtracking paradigm (BT) 



Generate and Test (GT) Algorithms

From: UBC CS 322 – CSP



CSP as a Search Problem: one formulation

From: UBC CS 322 – CSP



CSP as Graph Searching



CSP as Graph Searching



Standard Search Formulation

▪ Standard search formulation of CSPs

▪ States defined by the values assigned 
so far (partial assignments)
▪ Initial state: the empty assignment, {}
▪ Successor function: assign a value to an 

unassigned variable
▪ Goal test: the current assignment is 

complete and satisfies all constraints

▪ We’ll start with the straightforward, 
naïve approach, then improve it



Search Methods

▪ What would BFS do?

▪ What would DFS do?

▪ What problems does naïve search have?
▪ For a CSP with n variables of domain size d we would end up with a search tree where all 

the complete assignments (and thus all the solutions) are leaf nodes at depth n.
▪ The number of leaves is dn

[Demo: coloring -- dfs]



BFS

….

BFS will take a long time to find a solution.

DFS (Naive search) seems to be better choice



Video of Demo Coloring – DFS 
https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

• A map coloring 

problem is a 

type of CSP 

where each 

state can be 

assigned a color 

from the set 

(red,green,blue)

• The constraint 

involved says 

that no two 

neighbouring

state is allowed 

to have the 

same color.

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html


Demo Coloring – DFS 

• A map coloring 

problem is a 

type of CSP 

where each 

state can be 

assigned a color 

from the set 

(red,green,blue)

• The constraint 

involved says 

that no two 

neighbouring

state is allowed 

to have the 

same color.

https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html 

https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html


Backtracking Search



Backtracking Search

▪ Backtracking search is the basic uninformed algorithm for solving CSPs

▪ Idea 1: One variable at a time
▪ Variable assignments are commutative, so fix ordering
▪ I.e., [WA = red then NT = green] same as [NT = green then WA = red]
▪ Only need to consider assignments to a single variable at each step

▪ Idea 2: Check constraints as you go
▪ I.e. consider only values which do not conflict with previous assignments
▪ Might have to do some computation to check the constraints
▪ “Incremental goal test”

▪ Depth-first search with these two improvements
is called backtracking search (not the best name)

▪ Can solve n-queens for n  25



Backtracking Search



CSP as Graph Searching



Video of Demo Coloring – Backtracking
https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html


Demo Coloring – Backtracking

https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html 

https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html


Backtracking Example



Backtracking Search

▪ Backtracking = DFS + variable-ordering + fail-on-violation

[Demo: coloring -- backtracking]

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html


Backtracking Search



Improving Backtracking

▪ General-purpose ideas give huge gains in speed

▪ Ordering:

▪ Which variable should be assigned next?

▪ In what order should its values be tried?

▪ Filtering: Can we detect inevitable failure early?

▪ Structure: Can we exploit the problem structure?



Filtering



▪ Filtering: Keep track of domains for unassigned variables and cross off bad options

▪ Forward checking: Cross off values that violate a constraint when added to the existing 
assignment

Filtering: Forward Checking

WA
SA

NT Q

NSW

V

[Demo: coloring -- forward checking]



Video of Demo Coloring – Backtracking with Forward Checking 
https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html


Backtracking with Forward Checking

https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html 

https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html


Filtering: Constraint Propagation

▪ Forward checking propagates information from assigned to unassigned variables, but 
doesn't provide early detection for all failures:

▪ NT and SA cannot both be blue!
▪ Why didn’t we detect this yet?
▪ Constraint propagation: reason from constraint to constraint

WA
SA

NT Q

NSW

V



Consistency of A Single Arc

▪ An arc X → Y is consistent iff for every x in the tail there is some y in the head which 
could be assigned without violating a constraint

▪ Remove values in the domain of X 
     if there isn’t a corresponding legal Y

▪ Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA
SA

NT Q

NSW

V



Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff

for every value x of X there is some allowed y

WA NT Q NSW V SA T

© 2022 Pearson Education Ltd.



Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff

for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked

© 2022 Pearson Education Ltd.



Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff

for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking 

Can be run as a preprocessor or after each assignment

© 2022 Pearson Education Ltd.



Arc Consistency of an Entire CSP

▪ A simple form of propagation makes sure all arcs are consistent:

▪ Important: If X loses a value, neighbors of X need to be rechecked!
▪ Arc consistency detects failure earlier than forward checking
▪ Can be run as a preprocessor or after each assignment 
▪ What’s the downside of enforcing arc consistency?

Remember: 
Delete from  

the tail!

WA SA

NT Q

NSW

V



Enforcing Arc Consistency in a CSP

▪ Runtime: O(n2d3), can be reduced to O(n2d2)
▪ … but detecting all possible future problems is NP-hard – why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]



Limitations of Arc Consistency

▪ After enforcing arc 
consistency:

▪ Can have one solution left

▪ Can have multiple solutions left

▪ Can have no solutions left (and 
not know it)

▪ Arc consistency still runs 
inside a backtracking search!

What went 
wrong here?

[Demo: coloring -- arc consistency]

[Demo: coloring -- forward checking]



Video of Demo Coloring – Backtracking with Arc Consistency –
Complex Graph



Backtracking with Arc Consistency

https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html 

https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html


Ordering



Ordering: Minimum Remaining Values

▪ Variable Ordering: Minimum remaining values (MRV):

▪ Choose the variable with the fewest legal left values in its domain

▪ There is only one possible value for SA, so it makes sense to assign SA=blue next 
rather than assigning Q.

▪ Why min rather than max?

▪ Also called “most constrained variable”

▪ “Fail-fast” ordering



Ordering: Least Constraining Value

▪ Value Ordering: Least Constraining Value
▪ Given a choice of variable, choose the least 

constraining value

▪ I.e., the one that rules out the fewest values in 
the remaining variables

▪ Note that it may take some computation to 
determine this!  (E.g., rerunning filtering)

▪ Why least rather than most?

▪ Combining these ordering ideas makes
1000 queens feasible

[Demo: coloring – backtracking + AC + ordering]



Demo: Backtracking + AC + Ordering

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html


K-Consistency



K-Consistency

▪ Stronger forms of propagation can be defined with the notion of k-
consistency

▪ Increasing degrees of consistency

▪ 1-Consistency (Node Consistency): Each single node’s domain has a value 
which meets that node’s unary constraints

▪ 2-Consistency (Arc Consistency): For each pair of nodes, any consistent 
assignment to one can be extended to the other

▪ K-Consistency: For each k nodes, any consistent assignment to k-1 can be 
extended to the kth node.

▪ Higher k --> more expensive to compute
▪ In practice, determining the appropriate level of consistency 

checking is mostly an empirical science. Computing 2-consistency 
is common, and 3-consistency less common.

▪ (You need to know the k=2 case: arc consistency)



Strong K-Consistency

▪ Strong k-consistency: also k-1, k-2, … 1 consistent

▪ Claim: strong n-consistency means we can solve without backtracking!

▪ Why?
▪ Choose any assignment to any variable

▪ Choose a new variable

▪ By 2-consistency, there is a choice consistent with the first

▪ Choose a new variable

▪ By 3-consistency, there is a choice consistent with the first 2

▪ …

▪ Lots of middle ground between arc consistency and n-consistency!  (e.g. k=3, called 
path consistency)



Structure



Problem Structure

▪ We examine ways in which the structure of the problem, as 
represented by the constraint graph, can be used to find 
solutions quickly. Most of the approaches here also apply to 
other problems besides CSPs, such as probabilistic reasoning.

▪ The only way we can possibly hope to deal with the vast real 
world is to decompose it into subproblems. Looking again at the 
constraint graph for Australia (Figure 5.1(b), repeated as Figure 
5.12(a)), one fact stands out: Tasmania is not connected to the 
mainland.3 Intuitively, it is obvious that coloring Tasmania and 
coloring the mainland are independent subproblems

▪ Independent subproblems are identifiable as connected 
components of constraint graph

▪ Suppose a graph of n variables can be broken into subproblems
of only c variables:
▪ Worst-case solution cost is O((n/c)(dc)), linear in n
▪ E.g., n = 80, d = 2, c =20
▪ 280 = 4 billion years at 10 million nodes/sec
▪ (4)(220) = 0.4 seconds at 10 million nodes/sec



Tree-Structured CSPs

▪ Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time 
where n is the number of tree nodes and d is the size of the largest domain.
▪ Compare to general CSPs, where worst-case time is O(dn)

▪ This property also applies to probabilistic reasoning (later): an example of the relation 
between syntactic restrictions and the complexity of reasoning



Tree-Structured CSPs

▪ Algorithm for tree-structured CSPs:
▪ To solve a tree-structured CSP, first pick any variable to be the root of the tree, 

and choose an ordering of the variables such that each variable appears after its 
parent in the tree. Such an ordering s called a topological sort.

▪ Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
▪ Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

▪ Runtime: O(n d2)  (why?)



Tree-Structured CSPs

▪ Claim 1: After backward pass, all root-to-leaf arcs are consistent
▪ Proof: Each X→Y was made consistent at one point and Y’s domain could not have 

been reduced thereafter (because Y’s children were processed before Y)

▪ Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
▪ Proof: Induction on position

▪ Why doesn’t this algorithm work with cycles in the constraint graph?

▪ Note: we’ll see this basic idea again with Bayes’ nets



The TREE-CSP-SOLVER algorithm for solving tree-structured CSPs.



Improving Structure



Nearly Tree-Structured CSPs

▪ Conditioning: instantiate a variable, prune its neighbors' domains

▪ Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining 
constraint graph is a tree.

▪ We can solve the remaining tree with the TREE-CSP-SOLVER
▪ Without South Australia, the graph would become a tree

▪ Cutset size c gives runtime O( (dc) (n-c) d2 ), very fast for small c



Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP 
for each assignment

Solve the residual CSPs 
(tree structured)

Choose a cutset



Cutset Quiz

▪ Find the smallest cutset for the graph below.



▪ The second way to reduce a constraint graph to a tree is based on constructing a tree decomposition of the 
constraint graph: a transformation of the original graph into a tree where each node in the tree consists of a set of 
variables, as in Figure 5.13. A tree decomposition must satisfy these three requirements:
▪ Every variable in the original problem appears in at least one of the tree nodes.
▪ If two variables are connected by a constraint in the original problem, they must appear together (along with the constraint) in at least 

one of the tree nodes.
▪ If a variable appears in two nodes in the tree, it must appear in every node along the path connecting those nodes.



Tree Decomposition*

▪ Idea: create a tree-structured graph of mega-variables

▪ Each mega-variable encodes part of the original CSP

▪ Subproblems overlap to ensure consistent solutions

M1 M2 M3 M4

{(WA=r,SA=g,NT=b),      

(WA=b,SA=r,NT=g),

…}

{(NT=r,SA=g,Q=b),

(NT=b,SA=g,Q=r),

…}

Agree: (M1,M2) 

{((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)),  …}
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Once we have a tree-structured graph, we can apply TREE-CSP-SOLVER to get a solution in O(nd2) time, where n is the 

number of tree nodes and d is the size of the largest domain.



Iterative Improvement



Local Search for CSPs

▪ Local search methods typically work with “complete” states, i.e., all variables assigned.
▪ Local search algorithms turn out to be very effective in solving many CSPs. They use a complete-state 

formulation (as introduced in Section 4.1.1) where each state assigns a value to every variable, and the 
search changes the value of one variable at a time.

▪ To apply to CSPs:
▪ Take an assignment with unsatisfied constraints
▪ Operators reassign variable values
▪ No fringe!  Live on the edge.

▪ We then randomly choose a conflicted variable, we’d like to change the value to something that brings 
us closer to a solution; the most obvious approach is to select the value that results in the minimum 
number of conflicts with other variables—the min-conflicts heuristic.

▪ Algorithm: While not solved,
▪ Variable selection: randomly select any conflicted variable
▪ Value selection: min-conflicts heuristic:

▪ Choose a value that violates the fewest constraints
▪ I.e., hill climb with h(n) = total number of violated constraints

▪ Min-conflicts is surprisingly effective for many CSPs, amazingly, on the n-queens 
problem.



8-queens problem



Example: 4-Queens

▪ States: 4 queens in 4 columns (44 = 256 states)
▪ Operators: move queen in column
▪ Goal test: no attacks
▪ Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]



Video of Demo Iterative Improvement – n Queens



Video of Demo Iterative Improvement – Coloring
https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html 

https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html


Performance of Min-Conflicts

▪ Min-conflicts is surprisingly effective for many CSPs. Amazingly, on the n-queens problem, if you don’t count the initial 
placement of queens, the run time of min-conflicts is roughly independent of problem size.

▪ Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 
10,000,000)! 

▪ It solves even the million-queens problem in an average of 50 steps (after the initial assignment). 
▪ Min-conflicts also works well for hard problems. 
▪ For example, it has been used to schedule observations for the Hubble Space Telescope, reducing the time taken to 

schedule a week of observations from three weeks (!) to around 10 minutes.
▪ The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio.



Summary: CSPs

▪ CSPs are a special kind of search problem:
▪ States are partial assignments
▪ Goal test defined by constraints

▪ Basic solution: backtracking search

▪ Speed-ups:
▪ Ordering
▪ Filtering
▪ Structure

▪ Iterative min-conflicts is often effective in practice

CSPLib: A problem library for constraints:

https://www.csplib.org/

https://www.csplib.org/
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