
COE 4213564
Introduction to Artificial Intelligence

Constraint Satisfaction Problems

Many slides are adapted from CS 188 (http://ai.berkeley.edu), CS 322, CIS 521, CS 221, CS182, CS4420.

Constraint Satisfaction Problems

Chapter 5

2

© 2022 Pearson Education Ltd.

Artificial Intelligence: A Modern Approach

Fourth Edition, Global Edition

What is Search For?

▪ Assumptions about the world: a single agent, deterministic
actions, fully observed state, discrete state space

▪ Planning: sequences of actions
▪ The path to the goal is the important thing

▪ Paths have various costs, depths

▪ Heuristics give problem-specific guidance

▪ Identification: assignments to variables
▪ The goal itself is important, not the path

▪ All paths at the same depth (for some formulations)

▪ CSPs are a specialized class of identification problems where we assign
values to variables while respecting certain constraints

Constraint Satisfaction Problems

Constraint Satisfaction Problems

▪ Constraint satisfaction problems (CSPs) are mathematical questions defined as a set
of objects whose state must satisfy a number of constraints or limitations.

Defining Constraint Satisfaction Problems

Chapter 5 6

A constraint satisfaction problem (CSP) consists of three components, X, D, and
C:
• X is a set of variables, {X1 ….. Xn}.
• D is a set of domains, {D1, …. , Dn}, one for each variable
• C is a set of constraints that specify allowable combination of values

CSPs deal with assignments of values to variables.
• A complete assignment is one in which every variable is assigned a value, and a

solution to a CSP is a consistent, complete assignment.
• A partial assignment is one that leaves some variables unassigned.
• Partial solution is a partial assignment that is consistent

© 2022 Pearson Education Ltd.

Constraint satisfaction problems (CSPs)

Chapter 5 7

Standard search problem:
state is a “black box”—any old data structure that

supports goal test, eval, successor

CSP:
state is defined by variables X i with values from domain Di

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

© 2022 Pearson Education Ltd.

Constraint satisfaction problems (CSPs)

From: UBC CS 322 – CSP

Possible Worlds

Varieties of CSPs and Constraints

Varieties of CSPs

▪ Discrete Variables
▪ Finite domains

▪ Size d means O(dn) complete assignments

▪ E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

▪ Infinite domains (integers, strings, etc.)

▪ E.g., job scheduling, variables are start/end times for each job

▪ Linear constraints solvable, nonlinear undecidable

▪ Continuous variables
▪ E.g., start/end times for Hubble Telescope observations

▪ Linear constraints solvable in polynomial time by LP methods
(see cs170 for a bit of this theory)

Varieties of Constraints

▪ Varieties of Constraints
▪ Unary constraints involve a single variable (equivalent to

reducing domains), e.g.:

▪ Binary constraints involve pairs of variables, e.g.:

▪ Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

▪ Preferences (soft constraints):
▪ E.g., red is better than green
▪ Often representable by a cost for each variable assignment
▪ Gives constrained optimization problems
▪ (We’ll ignore these until we get to Bayes’ nets)

Constraints

From: UBC CS 322 – CSP

Constraints

From: UBC CS 322 – CSP

Scope of a constraint

From: UBC CS 322 – CSP

Solving Constraint Satisfaction Problems

CSP Examples

Example problem: Map coloring

• We are looking at a map of
Australia showing each of its
states and territories

• We are given the task of
coloring each region either red,
green, or blue in such a way that
no two neighboring regions
have the same color.

• To formulate this as a CSP, we
define the variables to be the
regions:

 X = {WA,NT,Q,NSW,V,SA,T}

Example: Map Coloring

▪ Variables:

▪ Domains:

▪ Constraints: adjacent regions must have different
colors

▪ Solutions are assignments satisfying all
constraints, e.g.:

Implicit:

Explicit:

Example: N-Queens

▪ Formulation 1:

▪ Variables:

▪ Domains:

▪ Constraints

Queens are not in the same row (No (1,1)),

Queens are not in the same columns

Queens are not in the same diagonals

Queens are not in the same oppsite diagonals

Queens can not attack/threaten each other

Example: N-Queens

▪ Formulation 2:

▪ Variables:

▪ Domains:

▪ Constraints:

Implicit:

Explicit:

Each row will one queen.

Assign a column to each queen.

Constraint Graphs

Constraint Graphs

▪ Binary CSP: each constraint relates (at most) two
variables

▪ Binary constraint graph: nodes are variables, arcs
show constraints

▪ General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Example: cryptarithmetic puzzles

Example: Cryptarithmetic

▪ Variables:

▪ Domains:

▪ Constraints:
- Each letter in a cryptarithmetic puzzle represents a different digit. For the case in Figure 5.2(a),
this would be represented as the global constraint Alldiff (F;T;U;W;R;O).

- The addition constraints on the four columns of the puzzle can be written as the following n-ary
constraints:

O+O = R+10 C1

C1+W +W =U +10 C2

C2+T +T = O+10 C3

C3 = F ;
where C1, C2, and C3 are auxiliary variables representing the digit carried over into the tens,
hundreds, or thousands column.

F T U W R O C1 C2 C3

C3 C2 C1

Example: Sudoku

▪ Variables:

▪ Each (open) square

▪ Domains:

▪ {1,2,…,9}

▪ Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of
pairwise inequality
constraints)

Real-World CSPs

▪ Scheduling problems: e.g., when can we all meet?

▪ Timetabling problems: e.g., which class is offered when and where?

▪ Assignment problems: e.g., who teaches what class

▪ Hardware configuration

▪ Transportation scheduling

▪ Factory scheduling

▪ Circuit layout

▪ Fault diagnosis

▪ … lots more!

▪ Many real-world problems involve real-valued variables…

Solving CSPs

Solving Constraint Satisfaction Problems (CSPs)

▪ A CSP can be solved using generate-and-test paradigm (GT) that
systematically generates each possible value assignment and then it
tests to see if it satisfies all the constraints.

▪ A more efficient method uses the backtracking paradigm (BT) that is
the most common algorithm for performing systematic search.
Backtracking incrementally attempts to extend a partial solution
toward a complete solution, by repeatedly choosing a value for
another variable.

▪ Two methods:
▪ Generate & Test
▪ Graph search with backtracking paradigm (BT)

Generate and Test (GT) Algorithms

From: UBC CS 322 – CSP

CSP as a Search Problem: one formulation

From: UBC CS 322 – CSP

CSP as Graph Searching

CSP as Graph Searching

Standard Search Formulation

▪ Standard search formulation of CSPs

▪ States defined by the values assigned
so far (partial assignments)
▪ Initial state: the empty assignment, {}
▪ Successor function: assign a value to an

unassigned variable
▪ Goal test: the current assignment is

complete and satisfies all constraints

▪ We’ll start with the straightforward,
naïve approach, then improve it

Search Methods

▪ What would BFS do?

▪ What would DFS do?

▪ What problems does naïve search have?
▪ For a CSP with n variables of domain size d we would end up with a search tree where all

the complete assignments (and thus all the solutions) are leaf nodes at depth n.
▪ The number of leaves is dn

[Demo: coloring -- dfs]

BFS

….

BFS will take a long time to find a solution.

DFS (Naive search) seems to be better choice

Video of Demo Coloring – DFS
https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

• A map coloring

problem is a

type of CSP

where each

state can be

assigned a color

from the set

(red,green,blue)

• The constraint

involved says

that no two

neighbouring

state is allowed

to have the

same color.

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

Demo Coloring – DFS

• A map coloring

problem is a

type of CSP

where each

state can be

assigned a color

from the set

(red,green,blue)

• The constraint

involved says

that no two

neighbouring

state is allowed

to have the

same color.

https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html

Backtracking Search

Backtracking Search

▪ Backtracking search is the basic uninformed algorithm for solving CSPs

▪ Idea 1: One variable at a time
▪ Variable assignments are commutative, so fix ordering
▪ I.e., [WA = red then NT = green] same as [NT = green then WA = red]
▪ Only need to consider assignments to a single variable at each step

▪ Idea 2: Check constraints as you go
▪ I.e. consider only values which do not conflict with previous assignments
▪ Might have to do some computation to check the constraints
▪ “Incremental goal test”

▪ Depth-first search with these two improvements
is called backtracking search (not the best name)

▪ Can solve n-queens for n  25

Backtracking Search

CSP as Graph Searching

Video of Demo Coloring – Backtracking
https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

Demo Coloring – Backtracking

https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html

Backtracking Example

Backtracking Search

▪ Backtracking = DFS + variable-ordering + fail-on-violation

[Demo: coloring -- backtracking]

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

Backtracking Search

Improving Backtracking

▪ General-purpose ideas give huge gains in speed

▪ Ordering:

▪ Which variable should be assigned next?

▪ In what order should its values be tried?

▪ Filtering: Can we detect inevitable failure early?

▪ Structure: Can we exploit the problem structure?

Filtering

▪ Filtering: Keep track of domains for unassigned variables and cross off bad options

▪ Forward checking: Cross off values that violate a constraint when added to the existing
assignment

Filtering: Forward Checking

WA
SA

NT Q

NSW

V

[Demo: coloring -- forward checking]

Video of Demo Coloring – Backtracking with Forward Checking
https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

Backtracking with Forward Checking

https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html

Filtering: Constraint Propagation

▪ Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

▪ NT and SA cannot both be blue!
▪ Why didn’t we detect this yet?
▪ Constraint propagation: reason from constraint to constraint

WA
SA

NT Q

NSW

V

Consistency of A Single Arc

▪ An arc X → Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

▪ Remove values in the domain of X
 if there isn’t a corresponding legal Y

▪ Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA
SA

NT Q

NSW

V

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff

for every value x of X there is some allowed y

WA NT Q NSW V SA T

© 2022 Pearson Education Ltd.

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff

for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked

© 2022 Pearson Education Ltd.

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff

for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

© 2022 Pearson Education Ltd.

Arc Consistency of an Entire CSP

▪ A simple form of propagation makes sure all arcs are consistent:

▪ Important: If X loses a value, neighbors of X need to be rechecked!
▪ Arc consistency detects failure earlier than forward checking
▪ Can be run as a preprocessor or after each assignment
▪ What’s the downside of enforcing arc consistency?

Remember:
Delete from

the tail!

WA SA

NT Q

NSW

V

Enforcing Arc Consistency in a CSP

▪ Runtime: O(n2d3), can be reduced to O(n2d2)
▪ … but detecting all possible future problems is NP-hard – why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Limitations of Arc Consistency

▪ After enforcing arc
consistency:

▪ Can have one solution left

▪ Can have multiple solutions left

▪ Can have no solutions left (and
not know it)

▪ Arc consistency still runs
inside a backtracking search!

What went
wrong here?

[Demo: coloring -- arc consistency]

[Demo: coloring -- forward checking]

Video of Demo Coloring – Backtracking with Arc Consistency –
Complex Graph

Backtracking with Arc Consistency

https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html

Ordering

Ordering: Minimum Remaining Values

▪ Variable Ordering: Minimum remaining values (MRV):

▪ Choose the variable with the fewest legal left values in its domain

▪ There is only one possible value for SA, so it makes sense to assign SA=blue next
rather than assigning Q.

▪ Why min rather than max?

▪ Also called “most constrained variable”

▪ “Fail-fast” ordering

Ordering: Least Constraining Value

▪ Value Ordering: Least Constraining Value
▪ Given a choice of variable, choose the least

constraining value

▪ I.e., the one that rules out the fewest values in
the remaining variables

▪ Note that it may take some computation to
determine this! (E.g., rerunning filtering)

▪ Why least rather than most?

▪ Combining these ordering ideas makes
1000 queens feasible

[Demo: coloring – backtracking + AC + ordering]

Demo: Backtracking + AC + Ordering

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

K-Consistency

K-Consistency

▪ Stronger forms of propagation can be defined with the notion of k-
consistency

▪ Increasing degrees of consistency

▪ 1-Consistency (Node Consistency): Each single node’s domain has a value
which meets that node’s unary constraints

▪ 2-Consistency (Arc Consistency): For each pair of nodes, any consistent
assignment to one can be extended to the other

▪ K-Consistency: For each k nodes, any consistent assignment to k-1 can be
extended to the kth node.

▪ Higher k --> more expensive to compute
▪ In practice, determining the appropriate level of consistency

checking is mostly an empirical science. Computing 2-consistency
is common, and 3-consistency less common.

▪ (You need to know the k=2 case: arc consistency)

Strong K-Consistency

▪ Strong k-consistency: also k-1, k-2, … 1 consistent

▪ Claim: strong n-consistency means we can solve without backtracking!

▪ Why?
▪ Choose any assignment to any variable

▪ Choose a new variable

▪ By 2-consistency, there is a choice consistent with the first

▪ Choose a new variable

▪ By 3-consistency, there is a choice consistent with the first 2

▪ …

▪ Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called
path consistency)

Structure

Problem Structure

▪ We examine ways in which the structure of the problem, as
represented by the constraint graph, can be used to find
solutions quickly. Most of the approaches here also apply to
other problems besides CSPs, such as probabilistic reasoning.

▪ The only way we can possibly hope to deal with the vast real
world is to decompose it into subproblems. Looking again at the
constraint graph for Australia (Figure 5.1(b), repeated as Figure
5.12(a)), one fact stands out: Tasmania is not connected to the
mainland.3 Intuitively, it is obvious that coloring Tasmania and
coloring the mainland are independent subproblems

▪ Independent subproblems are identifiable as connected
components of constraint graph

▪ Suppose a graph of n variables can be broken into subproblems
of only c variables:
▪ Worst-case solution cost is O((n/c)(dc)), linear in n
▪ E.g., n = 80, d = 2, c =20
▪ 280 = 4 billion years at 10 million nodes/sec
▪ (4)(220) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

▪ Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
where n is the number of tree nodes and d is the size of the largest domain.
▪ Compare to general CSPs, where worst-case time is O(dn)

▪ This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

▪ Algorithm for tree-structured CSPs:
▪ To solve a tree-structured CSP, first pick any variable to be the root of the tree,

and choose an ordering of the variables such that each variable appears after its
parent in the tree. Such an ordering s called a topological sort.

▪ Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
▪ Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

▪ Runtime: O(n d2) (why?)

Tree-Structured CSPs

▪ Claim 1: After backward pass, all root-to-leaf arcs are consistent
▪ Proof: Each X→Y was made consistent at one point and Y’s domain could not have

been reduced thereafter (because Y’s children were processed before Y)

▪ Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
▪ Proof: Induction on position

▪ Why doesn’t this algorithm work with cycles in the constraint graph?

▪ Note: we’ll see this basic idea again with Bayes’ nets

The TREE-CSP-SOLVER algorithm for solving tree-structured CSPs.

Improving Structure

Nearly Tree-Structured CSPs

▪ Conditioning: instantiate a variable, prune its neighbors' domains

▪ Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining
constraint graph is a tree.

▪ We can solve the remaining tree with the TREE-CSP-SOLVER
▪ Without South Australia, the graph would become a tree

▪ Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

Cutset Quiz

▪ Find the smallest cutset for the graph below.

▪ The second way to reduce a constraint graph to a tree is based on constructing a tree decomposition of the
constraint graph: a transformation of the original graph into a tree where each node in the tree consists of a set of
variables, as in Figure 5.13. A tree decomposition must satisfy these three requirements:
▪ Every variable in the original problem appears in at least one of the tree nodes.
▪ If two variables are connected by a constraint in the original problem, they must appear together (along with the constraint) in at least

one of the tree nodes.
▪ If a variable appears in two nodes in the tree, it must appear in every node along the path connecting those nodes.

Tree Decomposition*

▪ Idea: create a tree-structured graph of mega-variables

▪ Each mega-variable encodes part of the original CSP

▪ Subproblems overlap to ensure consistent solutions

M1 M2 M3 M4

{(WA=r,SA=g,NT=b),

(WA=b,SA=r,NT=g),

…}

{(NT=r,SA=g,Q=b),

(NT=b,SA=g,Q=r),

…}

Agree: (M1,M2) 

{((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)), …}

A
g
re

e
 o

n
 s

h
a
re

d
 v

a
rs

NT

SA


WA

 

Q

SA


NT

 

A
g
re

e
 o

n
 s

h
a
re

d
 v

a
rs

NS

W

SA


Q

 

A
g
re

e
 o

n
 s

h
a
re

d
 v

a
rs

V

SA


NS

W

 

Once we have a tree-structured graph, we can apply TREE-CSP-SOLVER to get a solution in O(nd2) time, where n is the

number of tree nodes and d is the size of the largest domain.

Iterative Improvement

Local Search for CSPs

▪ Local search methods typically work with “complete” states, i.e., all variables assigned.
▪ Local search algorithms turn out to be very effective in solving many CSPs. They use a complete-state

formulation (as introduced in Section 4.1.1) where each state assigns a value to every variable, and the
search changes the value of one variable at a time.

▪ To apply to CSPs:
▪ Take an assignment with unsatisfied constraints
▪ Operators reassign variable values
▪ No fringe! Live on the edge.

▪ We then randomly choose a conflicted variable, we’d like to change the value to something that brings
us closer to a solution; the most obvious approach is to select the value that results in the minimum
number of conflicts with other variables—the min-conflicts heuristic.

▪ Algorithm: While not solved,
▪ Variable selection: randomly select any conflicted variable
▪ Value selection: min-conflicts heuristic:

▪ Choose a value that violates the fewest constraints
▪ I.e., hill climb with h(n) = total number of violated constraints

▪ Min-conflicts is surprisingly effective for many CSPs, amazingly, on the n-queens
problem.

8-queens problem

Example: 4-Queens

▪ States: 4 queens in 4 columns (44 = 256 states)
▪ Operators: move queen in column
▪ Goal test: no attacks
▪ Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]

Video of Demo Iterative Improvement – n Queens

Video of Demo Iterative Improvement – Coloring
https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa21/assets/demos/csp/csp_demos.html

Performance of Min-Conflicts

▪ Min-conflicts is surprisingly effective for many CSPs. Amazingly, on the n-queens problem, if you don’t count the initial
placement of queens, the run time of min-conflicts is roughly independent of problem size.

▪ Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n =
10,000,000)!

▪ It solves even the million-queens problem in an average of 50 steps (after the initial assignment).
▪ Min-conflicts also works well for hard problems.
▪ For example, it has been used to schedule observations for the Hubble Space Telescope, reducing the time taken to

schedule a week of observations from three weeks (!) to around 10 minutes.
▪ The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio.

Summary: CSPs

▪ CSPs are a special kind of search problem:
▪ States are partial assignments
▪ Goal test defined by constraints

▪ Basic solution: backtracking search

▪ Speed-ups:
▪ Ordering
▪ Filtering
▪ Structure

▪ Iterative min-conflicts is often effective in practice

CSPLib: A problem library for constraints:

https://www.csplib.org/

https://www.csplib.org/

	Slide 1: COE 4213564 Introduction to Artificial Intelligence
	Slide 2
	Slide 3: What is Search For?
	Slide 4: Constraint Satisfaction Problems
	Slide 5: Constraint Satisfaction Problems
	Slide 6: Defining Constraint Satisfaction Problems
	Slide 7: Constraint satisfaction problems (CSPs)
	Slide 8: Constraint satisfaction problems (CSPs)
	Slide 9
	Slide 10: Possible Worlds
	Slide 11: Varieties of CSPs and Constraints
	Slide 12: Varieties of CSPs
	Slide 13: Varieties of Constraints
	Slide 14: Constraints
	Slide 15: Constraints
	Slide 16: Scope of a constraint
	Slide 17: Solving Constraint Satisfaction Problems
	Slide 18: CSP Examples
	Slide 19: Example: Map Coloring
	Slide 20: Example: N-Queens
	Slide 21: Example: N-Queens
	Slide 22: Constraint Graphs
	Slide 23: Constraint Graphs
	Slide 24: Example: cryptarithmetic puzzles
	Slide 25: Example: Cryptarithmetic
	Slide 26: Example: Sudoku
	Slide 27: Real-World CSPs
	Slide 28: Solving CSPs
	Slide 29: Solving Constraint Satisfaction Problems (CSPs)
	Slide 30: Generate and Test (GT) Algorithms
	Slide 31: CSP as a Search Problem: one formulation
	Slide 32: CSP as Graph Searching
	Slide 33: CSP as Graph Searching
	Slide 34: Standard Search Formulation
	Slide 35: Search Methods
	Slide 36: BFS
	Slide 37: Video of Demo Coloring – DFS https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html
	Slide 38: Demo Coloring – DFS
	Slide 39: Backtracking Search
	Slide 40: Backtracking Search
	Slide 41: Backtracking Search
	Slide 42: CSP as Graph Searching
	Slide 43: Video of Demo Coloring – Backtracking https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html
	Slide 44: Demo Coloring – Backtracking
	Slide 45: Backtracking Example
	Slide 46: Backtracking Search
	Slide 47: Backtracking Search
	Slide 48: Improving Backtracking
	Slide 49: Filtering
	Slide 50: Filtering: Forward Checking
	Slide 51: Video of Demo Coloring – Backtracking with Forward Checking https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html
	Slide 52: Backtracking with Forward Checking
	Slide 53: Filtering: Constraint Propagation
	Slide 54: Consistency of A Single Arc
	Slide 55: Arc consistency
	Slide 56: Arc consistency
	Slide 57: Arc consistency
	Slide 58: Arc Consistency of an Entire CSP
	Slide 59: Enforcing Arc Consistency in a CSP
	Slide 60: Limitations of Arc Consistency
	Slide 62: Video of Demo Coloring – Backtracking with Arc Consistency – Complex Graph
	Slide 63: Backtracking with Arc Consistency
	Slide 64: Ordering
	Slide 65: Ordering: Minimum Remaining Values
	Slide 66: Ordering: Least Constraining Value
	Slide 67: Demo: Backtracking + AC + Ordering
	Slide 68: K-Consistency
	Slide 69: K-Consistency
	Slide 70: Strong K-Consistency
	Slide 71: Structure
	Slide 72: Problem Structure
	Slide 73: Tree-Structured CSPs
	Slide 74: Tree-Structured CSPs
	Slide 75: Tree-Structured CSPs
	Slide 76: The TREE-CSP-SOLVER algorithm for solving tree-structured CSPs.
	Slide 77: Improving Structure
	Slide 78: Nearly Tree-Structured CSPs
	Slide 79: Cutset Conditioning
	Slide 80: Cutset Quiz
	Slide 81
	Slide 82: Tree Decomposition*
	Slide 83: Iterative Improvement
	Slide 84: Local Search for CSPs
	Slide 85: 8-queens problem
	Slide 86: Example: 4-Queens
	Slide 87: Video of Demo Iterative Improvement – n Queens
	Slide 88: Video of Demo Iterative Improvement – Coloring
	Slide 89: Performance of Min-Conflicts
	Slide 90: Summary: CSPs

