
COE 4213564
Introduction to Artificial Intelligence

Adversarial Search

Many slides are adapted from CS 188 (http://ai.berkeley.edu), CS 322, CIS 521, CS 221, CS182, CS4420.

Game Playing State-of-the-Art

▪ Checkers: 1950: First computer player. 1994: First
computer champion: Chinook ended 40-year-reign of
human champion Marion Tinsley using complete 8-
piece endgame. 2007: Checkers solved!
https://en.wikipedia.org/wiki/Checkers
- Solved means you can force to win or draw if you
play optimally.

▪ Chess: 1997: Deep Blue defeats human champion
Gary Kasparov in a six-game match. Deep Blue
examined 200M positions per second, used very
sophisticated evaluation and undisclosed methods for
extending some lines of search up to 40 ply. Current
programs are even better, if less historic.
https://en.wikipedia.org/wiki/Chess

▪ Go: Human champions are now starting to be
challenged by machines. In go, b > 300! Classic
programs use pattern knowledge bases, but big
recent advances use Monte Carlo (randomized)
expansion methods.
https://en.wikipedia.org/wiki/Go_(game)

https://en.wikipedia.org/wiki/Checkers
https://en.wikipedia.org/wiki/Chess
https://en.wikipedia.org/wiki/Go_(game)

Game Playing State-of-the-Art

▪ Checkers: 1950: First computer player. 1994: First
computer champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete
8-piece endgame. 2007: Checkers solved!

▪ Chess: 1997: Deep Blue defeats human champion
Gary Kasparov in a six-game match. Deep Blue
examined 200M positions per second, used very
sophisticated evaluation and undisclosed methods
for extending some lines of search up to 40 ply.
Current programs are even better, if less historic.

▪ Go: 2016: Alpha GO defeats human champion.
Uses Monte Carlo Tree Search, learned evaluation
function.

▪ Pacman

Behavior from Computation

▪ Demo: Pacman eating food pellets, avoiding ghosts, eating power
pellets and then eating ghosts and getting extra score.

[Demo: mystery pacman (L6D1)]

•Pac-man — The Protagonist
•Inky and Clyde — The Antagonists
•Pellet — The food source of our hungry
friend
•Power Pellet — the object that renders
Pac-man’s adversaries edible.

Blinky, Pinky, Inky and Clyde,

collectively known as the Ghost Gang,

are a quartet of characters from the Pac-

Man video game franchise. Created

by Toru Iwatani, they first appear in the

1980 arcade game Pac-Man as the main

antagonists.

https://en.wikipedia.org/wiki/List_of_Pac-Man_video_games
https://en.wikipedia.org/wiki/List_of_Pac-Man_video_games
https://en.wikipedia.org/wiki/Toru_Iwatani
https://en.wikipedia.org/wiki/Pac-Man

Video of Demo Mystery Pacman

Adversarial Games

▪ Many different kinds of games!
▪ How to categorize?

▪ Axes:
▪ Deterministic or stochastic?

Deteministic ex: Checkers, Chess
Stocastic ex: backgammon (throw a dice)

▪ One, two, or more players?
▪ Zero sum? (All playing against each other)
▪ Perfect information (can you see the state)?

Do you know everything about the current situation of the game? Chess: Yes; Poker: No
(don’t know other player’s cards.)

▪ Want algorithms for calculating a strategy (policy) which recommends a move
from each state

▪ By considering an opponent that we don’t control

Types of Games

Deterministic Games

▪ Many possible formalizations, one is:

▪ States: S (start at s0)

▪ Players: P={1...N} (usually take turns)

▪ Actions: A (may depend on player / state)

▪ Transition Function: SxA→ S

▪ Terminal Test: S → {t,f}

▪ Terminal Utilities: SxP→ R
(Every outcome of the game will be
scored like win, lose, draw, amount of money,
numerical score)

▪ Solution for a player is a policy: S → A

Zero-Sum Games

▪ Zero-Sum Games
▪ Agents have opposite utilities (values on outcomes)

- one agent gets it other one doesn’t get it

▪ Lets us think of a single value that one maximizes and
the other minimizes

▪ “zero-sum” means that what is good for one player is
just as bad for the other: there is no “win-win”
outcome

▪ Adversarial, pure competition

▪ General Games
▪ Agents have independent utilities (values on

outcomes)
▪ Ex: Blue agent collect green jewels and red one

collect orange jewels by helping each other.
▪ Cooperation, indifference, competition, and

more are all possible
▪ More later on non-zero-sum games

Adversarial Search

- For zero-sum games, we use approach adverserial search.

- Competitive environments, in which two or more agents have conflicting goals, giving rise to

adversarial search problems

Single-Agent Trees

8

2 0 2 6 4 6… …
- Let’s look at first to single-agent trees and generalize it to two-agent trees.

- Pacman trying to eat food pellets; actions : east and west

- Utility function: -1 for every steps taken; +10 for every pellets eaten

We define the
complete
game tree as a
search tree
that follows
every
sequence of
moves all the
way to a
terminal state.

Value of a State for Single-Agent

Non-Terminal States:

8

2 0 2 6 4 6… …
Terminal States:

Value of a state:
The best achievable

outcome (utility)
from that state

6 8

8

Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Generalize to adversarial Games:

- Pacman against to ghost

- Moves in turn

- At the end, get

a high score

a low score

Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

- Assume that game

is over after each

player makes a

move.

- Packman tries to

maximize while

ghost tries to

minimize utility

scores

-10-8

-8

Ghost

Pacman

Tic-Tac-Toe Game Tree

• The top node is the initial state, and

MAX moves first, placing an X in an

empty square. We show part of the

tree, giving alternating moves by

MIN (O) and MAX (X), until we

eventually reach terminal states,

which can be assigned utilities

according to the rules of the game.

• For tic-tac-toe the game tree is relatively small—fewer than

9!=362;880 terminal nodes (with only 5,478 distinct states).

• But for chess there are over 10^40 nodes, so the game tree is

best thought of as a theoretical construct that we cannot realize

in the physical world.

• For tic-tac-toe, if both player play optimally, the result will be a

tie (draw).

• MAX prefers to move to a state of

maximum value when it is MAX’s

turn to move, and MIN prefers a

state of minimum value (that is,

minimum value for MAX and thus

maximum value for MIN)

1 (win), 0 (end in a draw), -1(lose)

Adversarial Search (Minimax)

▪ Deterministic, zero-sum games:

▪ Tic-tac-toe, chess, checkers

▪ One player maximizes result

▪ The other minimizes result

▪ Minimax search:

▪ Make a state-space search tree

▪ Players alternate turns

▪ Compute each node’s minimax value:
the best achievable utility against a
rational (optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Game will

be played

out by

following

these states

17

Minimax Implementation

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Base

Case for

recursion

Minimax Example

12 8 5 23 2 144 6

3 2 2MİNIMIZER

MAXIMIZER

3

Solution

Path

Minimax Properties

Optimal against a perfect player. Otherwise?

10 10 9 100

max

min

[Demo: min vs exp (L6D2, L6D3)]

10

Player may do mistakes. Not optimal, then select a different path stochastically.

Optimal

Path

Not

Optimal

Demo 1: Min score by eaten by ghost in one step. (Minmax solution)

Demo 2: Not smart, taking random actions and takes risks. It might give better solutions at different runs.

Video of Demo Min vs. Exp (Min)

Video of Demo Min vs. Exp (Exp)

Minimax Efficiency

Minimax Efficiency

▪ How efficient is minimax?
▪ Just like (exhaustive) DFS

▪ Time: O(bm)

▪ Space: O(bm)

▪ Example: For chess, b 35, m 100
▪ Exact solution is completely infeasible

▪ But, do we need to explore the whole
tree?

Resource Limits

We can not explore the entire game tree because of finite computing power

Game Tree Pruning

The number of game states is exponential in the depth of the tree. No algorithm cancompletely

eliminate the exponent, but we can sometimes cut it in half, computing the correct minimax decision without

examining every state by pruning large parts of the tree that make no difference to the outcome. The

particular technique we examine is called alpha–beta pruning.

Minimax Example

12 8 5 23 2 144 6

• To make use of our limited computation time, we can cut off the search early and apply a
heuristic evaluation function to states, effectively treating nonterminal nodes as if they were
terminal.

Minimax Pruning

12 8 5 23 2 14

Maximizer will not select any nodes that has values less than 3, skip (prune) these nodes.

3

3

2

Alpha-Beta Pruning

▪ General configuration (MIN version)

▪ We’re computing the MIN-VALUE at some node n

▪ We’re looping over n’s children

▪ n’s estimate of the childrens’ min is dropping

▪ Who cares about n’s value? MAX

▪ Let a be the best value that MAX can get at any choice

point along the current path from the root

▪ If n becomes worse than a, MAX will avoid it, so we can

stop considering n’s other children (it’s already bad

enough that it won’t be played)

▪ MAX version is symmetric

MAX

MIN

MAX

MIN

a

n

Alpha-Beta Pruning

31

Alpha-Beta Pruning

32

we can infer that the value of the root is at least 3.

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Implementation

34

Alpha-Beta Pruning Properties

10 10 0

max

min

• This pruning has no effect on minimax value computed for the root!

• Values of intermediate nodes might be wrong

• Important: children of the root may have the wrong value

• So the most naïve version won’t let you do action selection

• Good child ordering improves effectiveness of pruning

• With “perfect ordering”:

• Time complexity drops to O((2b)m/2) or better 𝑂 𝑏 + 0.5
𝑚+1

• Doubles solvable depth!

• Full search of, e.g. Chess, is still hopeless…

• With random ordering:

• The total number of nodes examined will be roughly O(b3m/4) for moderate b.

• This is a simple example of meta-reasoning (computing about what to compute)

Alpha-Beta Quiz

8
4

8

Alpha-Beta Quiz 2

10

100 2 20

10 2

10

Resource Limits

We can not explore the entire game tree because of finite computing power.

Resource Limits

▪ Problem: In realistic games, cannot search to leaves!

▪ Another Solution: Depth-limited search
▪ Instead, search only to a limited depth in the tree
▪ Replace terminal utilities with an evaluation function for non-

terminal positions

▪ Example:
▪ Suppose we have 100 seconds, can explore 10K nodes / sec
▪ So can check 1M nodes per move
▪ - reaches about depth 8 – decent chess program

▪ Guarantee of optimal play is gone

▪ More plies makes a BIG difference

▪ Another method: Use iterative deepening for an anytime
algorithm where you go level by level depending on your
computing power. ? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Depth Matters

▪ Evaluation functions are always
imperfect

▪ The deeper in the tree the evaluation
function is buried, the less the quality
of the evaluation function matters

▪ An important example of the tradeoff
between complexity of features and
complexity of computation

▪ Better evaluation functions requires
more time and produces better results
by going deeper levels of the search
tree

▪ Demo 1: evaluation function with 2
levels of depth

▪ Demo 1: evaluation function with 10
levels of depth

[Demo: depth limited (L6D4, L6D5)]

Video of Demo Thrashing (depth d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D6)]

Why Pacman Starves

▪ A danger of replanning agents!
▪ He knows his score will go up by eating the dot now (west, east)

▪ He knows his score will go up just as much by eating the dot later (east, west)

▪ There are no point-scoring opportunities after eating the dot (within the horizon, two here)

▪ Therefore, waiting seems just as good as eating: he may go east, then back west in the next
round of replanning!

Video of Demo Thrashing -- Fixed (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D7)]

Heuristic Alpha-Beta Tree Search

▪ To make use of our limited computation time, we can cut off the search early and apply a
heuristic evaluation function to states, effectively treating nonterminal nodes as if they were
terminal.

▪ In other words, we replace the UTILITY function with EVAL, which estimates a state’s utility.
▪ We also replace the terminal test by a cutoff test, which must return true for terminal states,

but is otherwise free to decide when to cut off the search, based on the search depth and any
property of the state that it chooses to consider.

▪ That gives us the formula H-MINIMAX(s, d) for the heuristic minimax value of state s at search
depth d

44

Evaluation Functions

• A heuristic evaluation function EVAL(s; p) returns

an estimate of the expected utility of state s to

player p, just as the heuristic functions of

Chapter 3 return an estimate of the distance to

the goal.

• For terminal states, it must be that EVAL(s;

p)=UTILITY(s; p) and

• For nonterminal states, the evaluation must be

somewhere between a loss and a win:

UTILITY(loss; p) EVAL(s; p)   UTILITY(win; p).

Evaluation Functions

▪ Beyond those requirements, what makes for a good evaluation function?
First, the computation must not take too long! (The whole point is to search
faster.)

▪ Second, the evaluation function should be strongly correlated with the actual
chances of winning.

▪ One might well wonder about the phrase “chances of winning.”

▪ For example,
▪ chess is not a game of chance: we know the current state with certainty, and no dice

are involved; if neither player makes a mistake, the outcome is predetermined.

▪ But if the search must be cut off at nonterminal states, then the algorithm will
necessarily be uncertain about the final outcomes of those states (even though that
uncertainty could be resolved with infinite computing resources).

46

Evaluation Functions : Features

▪ Most evaluation functions work by calculating Features various features of
the state—for example, in chess, we would have features for the number of
white pawns, black pawns, white queens, black queens, and so on.

▪ The features, taken together, define various categories or equivalence classes
of states: the states in each category have the same values for all the
features.

▪ In principle, the expected value can be determined for each category of states,
resulting in an evaluation function that works for any state.

▪ In practice, this kind of analysis requires too many categories and hence too
much experience to estimate all the probabilities. Instead, most evaluation
functions compute separate numerical contributions from each feature and
then combine them to find the total value

47

Evaluation Functions

▪ Evaluation functions score non-terminals in depth-limited search

▪ Ideal function: returns the actual minimax value of the position
▪ In practice: typically weighted linear sum of features:

▪ e.g. f1(s) = (num white queens – num black queens), etc.

Evaluation for Pacman

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function), smart ghosts coordinate (L6D6,7,8,10)]

- Check evaluation function, change the evaluation or your institution if it does not produce good results.

- Find smart evaluation functions.

Video of Demo Smart Ghosts (Coordination)

Video of Demo Smart Ghosts (Coordination) – Zoomed In

Video of Demo: Limited Depth (2)

Video of Demo: Limited Depth (10)

Uncertain Outcomes

Worst-Case vs. Average Case

10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not an adversary!

-Agent(s) don’t play optimal. They plays

stochastically

- Agent may throw a dice for a move

- Agent not so clever

-Add chance nodes (circles)

-Find the weighted average for chance

-We can calculate the expected value of a

position: the average over all Expected

value possible outcomes of the chance

nodes.

• Stochastic games bring us a little closer to

the unpredictability of real life by including a

random element, such as the throwing of

dice.

• Backgammon is a typical stochastic game

that combines luck and skill.

Expectimax Search

▪ Why wouldn’t we know what the result of an action will be?
▪ Explicit randomness: rolling dice
▪ Unpredictable opponents: the ghosts respond randomly
▪ Actions can fail: when moving a robot, wheels might slip

▪ Values should now reflect average-case (expectimax)
outcomes, not worst-case (minimax) outcomes

▪ Expectimax search: compute the average score under
optimal play
▪ Max nodes as in minimax search
▪ Chance nodes are like min nodes but the outcome is uncertain
▪ Calculate their expected utilities
▪ I.e. take weighted average (expectation) of children

▪ Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes

10 4 5 7

max

chance

10 10 9 100

[Demo: min vs exp (L7D1,2)]

Video of Demo Minimax vs Expectimax (Min)

Video of Demo Minimax vs Expectimax (Exp)

Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Expectimax Pseudocode

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v 5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

Expectimax Example

8

12 9 6 03 2 154 6

4 78

Assume that all probablities are equal

Expectimax Pruning?

12 93 2

• Can we apply pruning ? No.

The last value in a node can be very large and change the average.

Depth-Limited Expectimax

…

…

492 362 …

400 300

Estimate of true
expectimax value

(which would
require a lot of

work to compute)

Stop earlier

without going to

all the way to the

bottom.

You need a good

evaluation

function that

gives you an

approximate

value (estimate)

Probabilities

Reminder: Probabilities

▪ A random variable represents an event whose outcome is unknown
▪ A probability distribution is an assignment of weights to outcomes

▪ Example: Traffic on freeway
▪ Random variable: T = whether there’s traffic
▪ Outcomes: T in {none, light, heavy}
▪ Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

▪ Some laws of probability (more later):
▪ Probabilities are always non-negative
▪ Probabilities over all possible outcomes sum to one

▪ As we get more evidence, probabilities may change:
▪ P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60
▪ We’ll talk about methods for reasoning and updating probabilities later

0.25

0.50

0.25

▪ The expected value of a function of a random variable is the
average, weighted by the probability distribution over
outcomes

▪ Example: How long to get to the airport?

Reminder: Expectations

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +

▪ In expectimax search, we have a probabilistic model
of how the opponent (or environment) will behave in
any state
▪ Model could be a simple uniform distribution (roll a die)
▪ Model could be sophisticated and require a great deal of

computation
▪ We have a chance node for any outcome out of our control:

opponent or environment
▪ The model might say that adversarial actions are likely!

▪ For now, assume each chance node magically comes
along with probabilities that specify the distribution
over its outcomes

What Probabilities to Use?

Having a probabilistic belief about
another agent’s action does not mean

that the agent is flipping any coins!

Quiz: Informed Probabilities

▪ Let’s say you know that your opponent is actually running a depth 2 minimax, using the
result 80% of the time, and moving randomly otherwise

▪ Question: What tree search should you use?

0.1 0.9

▪ Answer: Expectimax!
▪ To figure out EACH chance node’s probabilities,

you have to run a simulation of your opponent

▪ This kind of thing gets very slow very quickly

▪ Even worse if you have to simulate your
opponent simulating you…

▪ … except for minimax, which has the nice
property that it all collapses into one game tree

Modeling Assumptions

The Dangers of Optimism and Pessimism

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it’s not likely

Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

[Demos: world assumptions (L7D3,4,5,6)]

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman

Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

[Demos: world assumptions (L7D3,4,5,6)]

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman

Video of Demo World Assumptions
Random Ghost – Expectimax Pacman

Video of Demo World Assumptions
Adversarial Ghost – Minimax Pacman

Video of Demo World Assumptions
Adversarial Ghost – Expectimax Pacman

Video of Demo World Assumptions
Random Ghost – Minimax Pacman

Other Game Types

Mixed Layer Types

▪ E.g. Backgammon

▪ Expectiminimax

▪ Environment is an
extra “random
agent” player that
moves after each
min/max agent

▪ Each node
computes the
appropriate
combination of its
children

Example: Backgammon

▪ Dice rolls increase b: 21 possible rolls with 2 dice

▪ Backgammon 20 legal moves

▪ Depth 2 = 20 x (21 x 20)3 = 1.2 x 109

▪ As depth increases, probability of reaching a given
search node shrinks

▪ So usefulness of search is diminished

▪ So limiting depth is less damaging

▪ But pruning is trickier…

▪ Historic AI: TDGammon uses depth-2 search + very
good evaluation function + reinforcement learning:
world-champion level play

▪ 1st AI world champion in any game!

Image: Wikipedia

Multi-Agent Utilities

▪ What if the game is not zero-sum, or has multiple players?

▪ Generalization of minimax:
▪ Terminals have utility tuples
▪ Node values are also utility tuples
▪ Each player maximizes its own component
▪ Can give rise to cooperation and

competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

in a three-player game with players A, B, and C, a vector

(vA;vB;vC)is associated with each node.

5,1,7 5,2,5

5,2,5

5,2,5

1,6,6 6,1,2

6,1,2

Multi-Agent Utilities

81

	Slide 1: COE 4213564 Introduction to Artificial Intelligence
	Slide 2: Game Playing State-of-the-Art
	Slide 3: Game Playing State-of-the-Art
	Slide 4: Behavior from Computation
	Slide 5: Video of Demo Mystery Pacman
	Slide 6: Adversarial Games
	Slide 7: Types of Games
	Slide 8: Deterministic Games
	Slide 9: Zero-Sum Games
	Slide 10: Adversarial Search
	Slide 11: Single-Agent Trees
	Slide 12: Value of a State for Single-Agent
	Slide 13: Adversarial Game Trees
	Slide 14: Minimax Values
	Slide 15: Tic-Tac-Toe Game Tree
	Slide 16: Adversarial Search (Minimax)
	Slide 17
	Slide 18: Minimax Implementation
	Slide 19: Minimax Implementation (Dispatch)
	Slide 20: Minimax Example
	Slide 21: Minimax Properties
	Slide 22: Video of Demo Min vs. Exp (Min)
	Slide 23: Video of Demo Min vs. Exp (Exp)
	Slide 24: Minimax Efficiency
	Slide 25: Minimax Efficiency
	Slide 26: Resource Limits
	Slide 27: Game Tree Pruning
	Slide 28: Minimax Example
	Slide 29: Minimax Pruning
	Slide 30: Alpha-Beta Pruning
	Slide 31: Alpha-Beta Pruning
	Slide 32: Alpha-Beta Pruning
	Slide 33: Alpha-Beta Implementation
	Slide 34: Alpha-Beta Implementation
	Slide 35: Alpha-Beta Pruning Properties
	Slide 36: Alpha-Beta Quiz
	Slide 37: Alpha-Beta Quiz 2
	Slide 38: Resource Limits
	Slide 39: Resource Limits
	Slide 40: Depth Matters
	Slide 41: Video of Demo Thrashing (depth d=2)
	Slide 42: Why Pacman Starves
	Slide 43: Video of Demo Thrashing -- Fixed (d=2)
	Slide 44: Heuristic Alpha-Beta Tree Search
	Slide 45: Evaluation Functions
	Slide 46: Evaluation Functions
	Slide 47: Evaluation Functions : Features
	Slide 48: Evaluation Functions
	Slide 49: Evaluation for Pacman
	Slide 50: Video of Demo Smart Ghosts (Coordination)
	Slide 51: Video of Demo Smart Ghosts (Coordination) – Zoomed In
	Slide 52: Video of Demo: Limited Depth (2)
	Slide 53: Video of Demo: Limited Depth (10)
	Slide 54: Uncertain Outcomes
	Slide 55: Worst-Case vs. Average Case
	Slide 56: Expectimax Search
	Slide 57: Video of Demo Minimax vs Expectimax (Min)
	Slide 58: Video of Demo Minimax vs Expectimax (Exp)
	Slide 59: Expectimax Pseudocode
	Slide 60: Expectimax Pseudocode
	Slide 61: Expectimax Example
	Slide 62: Expectimax Pruning?
	Slide 63: Depth-Limited Expectimax
	Slide 64: Probabilities
	Slide 65: Reminder: Probabilities
	Slide 66: Reminder: Expectations
	Slide 67: What Probabilities to Use?
	Slide 68: Quiz: Informed Probabilities
	Slide 69: Modeling Assumptions
	Slide 70: The Dangers of Optimism and Pessimism
	Slide 71: Assumptions vs. Reality
	Slide 72: Assumptions vs. Reality
	Slide 73: Video of Demo World Assumptions Random Ghost – Expectimax Pacman
	Slide 74: Video of Demo World Assumptions Adversarial Ghost – Minimax Pacman
	Slide 75: Video of Demo World Assumptions Adversarial Ghost – Expectimax Pacman
	Slide 76: Video of Demo World Assumptions Random Ghost – Minimax Pacman
	Slide 77: Other Game Types
	Slide 78: Mixed Layer Types
	Slide 79: Example: Backgammon
	Slide 80: Multi-Agent Utilities
	Slide 81: Multi-Agent Utilities

