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Adversarial Search

Many slides are adapted from  CS 188 (http://ai.berkeley.edu), CS 322, CIS 521, CS 221, CS182, CS4420.



Game Playing State-of-the-Art

▪ Checkers: 1950: First computer player.  1994: First 
computer champion: Chinook ended 40-year-reign of 
human champion Marion Tinsley using complete 8-
piece endgame. 2007: Checkers solved!
https://en.wikipedia.org/wiki/Checkers
- Solved means you can force to win or draw if you 
play optimally.

▪ Chess: 1997: Deep Blue defeats human champion 
Gary Kasparov in a six-game match.  Deep Blue 
examined 200M positions per second, used very 
sophisticated evaluation and undisclosed methods for 
extending some lines of search up to 40 ply.  Current 
programs are even better, if less historic.
https://en.wikipedia.org/wiki/Chess

▪ Go: Human champions are now starting to be 
challenged by machines. In go, b > 300!  Classic 
programs use pattern knowledge bases, but big 
recent advances use Monte Carlo (randomized) 
expansion methods.
https://en.wikipedia.org/wiki/Go_(game)

https://en.wikipedia.org/wiki/Checkers
https://en.wikipedia.org/wiki/Chess
https://en.wikipedia.org/wiki/Go_(game)


Game Playing State-of-the-Art

▪ Checkers: 1950: First computer player.  1994: First 
computer champion: Chinook ended 40-year-reign 
of human champion Marion Tinsley using complete 
8-piece endgame. 2007: Checkers solved!

▪ Chess: 1997: Deep Blue defeats human champion 
Gary Kasparov in a six-game match.  Deep Blue 
examined 200M positions per second, used very 
sophisticated evaluation and undisclosed methods 
for extending some lines of search up to 40 ply.  
Current programs are even better, if less historic.

▪ Go: 2016: Alpha GO defeats human champion. 
Uses Monte Carlo Tree Search, learned evaluation 
function.

▪ Pacman



Behavior from Computation

▪ Demo: Pacman eating food pellets, avoiding ghosts, eating power 
pellets and then eating ghosts and getting extra score.

[Demo: mystery pacman (L6D1)]

•Pac-man — The Protagonist
•Inky and Clyde — The Antagonists
•Pellet — The food source of our hungry 
friend
•Power Pellet — the object that renders 
Pac-man’s adversaries edible.

Blinky, Pinky, Inky and Clyde, 

collectively known as the Ghost Gang, 

are a quartet of characters from the Pac-

Man video game franchise. Created 

by Toru Iwatani, they first appear in the 

1980 arcade game Pac-Man as the main 

antagonists.

https://en.wikipedia.org/wiki/List_of_Pac-Man_video_games
https://en.wikipedia.org/wiki/List_of_Pac-Man_video_games
https://en.wikipedia.org/wiki/Toru_Iwatani
https://en.wikipedia.org/wiki/Pac-Man


Video of Demo Mystery Pacman



Adversarial Games



▪ Many different kinds of games!
▪ How to categorize?

▪ Axes:
▪ Deterministic or stochastic?

Deteministic ex: Checkers, Chess
Stocastic ex: backgammon (throw a dice)

▪ One, two, or more players?
▪ Zero sum? (All playing against each other)
▪ Perfect information (can you see the state)?

Do you know everything about the current situation of the game? Chess: Yes; Poker: No 
(don’t know other player’s cards.)

▪ Want algorithms for calculating a strategy (policy) which recommends a move 
from each state 

▪ By considering an opponent that we don’t control

Types of Games



Deterministic Games

▪ Many possible formalizations, one is:

▪ States: S (start at s0)

▪ Players: P={1...N} (usually take turns)

▪ Actions: A (may depend on player / state)

▪ Transition Function: SxA→ S

▪ Terminal Test: S → {t,f}

▪ Terminal Utilities: SxP→ R
(Every outcome of the game will be
scored like win, lose, draw, amount of money,
numerical score)

▪ Solution for a player is a policy: S → A



Zero-Sum Games

▪ Zero-Sum Games
▪ Agents have opposite utilities (values on outcomes)

- one agent gets it other one doesn’t get it 

▪ Lets us think of a single value that one maximizes and 
the other minimizes

▪ “zero-sum” means that what is good for one player is 
just as bad for the other: there is no “win-win” 
outcome

▪ Adversarial, pure competition

▪ General Games
▪ Agents have independent utilities (values on 

outcomes)
▪ Ex: Blue agent collect green jewels and red one 

collect orange jewels by helping each other.
▪ Cooperation, indifference, competition, and 

more are all possible
▪ More later on non-zero-sum games



Adversarial Search

- For zero-sum games, we use approach adverserial search. 

- Competitive environments, in which two or more agents have conflicting goals, giving rise to 

adversarial search problems



Single-Agent Trees

8

2 0 2 6 4 6… …
- Let’s look at first to single-agent trees and generalize it to two-agent trees. 

- Pacman trying to eat food pellets; actions : east and west 

- Utility function: -1 for every steps taken; +10 for every pellets eaten

We define the 
complete 
game tree as a 
search tree 
that follows 
every 
sequence of 
moves all the 
way to a 
terminal state.



Value of a State for Single-Agent

Non-Terminal States:

8

2 0 2 6 4 6… …
Terminal States:

Value of a state: 
The best achievable 

outcome (utility) 
from that state

6 8

8



Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Generalize to adversarial Games:

- Pacman against to ghost

- Moves in turn

- At the end, get 

a high score

a low score



Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

- Assume that game 

is over after each 

player makes a 

move.

- Packman tries to 

maximize while 

ghost tries to 

minimize utility 

scores

-10-8

-8

Ghost

Pacman



Tic-Tac-Toe Game Tree

• The top node is the initial state, and 

MAX moves first, placing an X in an 

empty square. We show part of the 

tree, giving alternating moves by 

MIN (O) and MAX (X), until we 

eventually reach terminal states, 

which can be assigned utilities 

according to the rules of the game.

• For tic-tac-toe the game tree is relatively small—fewer than 

9!=362;880 terminal nodes (with only 5,478 distinct states). 

• But for chess there are over 10^40 nodes, so the game tree is 

best thought of as a theoretical construct that we cannot realize 

in the physical world.

• For tic-tac-toe, if both player play optimally, the result will be a 

tie (draw).

• MAX prefers to move to a state of 

maximum value when it is MAX’s 

turn to move, and MIN prefers a 

state of minimum value (that is, 

minimum value for MAX and thus 

maximum value for MIN)

1 (win), 0 (end in a draw), -1(lose)



Adversarial Search (Minimax)

▪ Deterministic, zero-sum games:

▪ Tic-tac-toe, chess, checkers

▪ One player maximizes result

▪ The other minimizes result

▪ Minimax search:

▪ Make a state-space search tree

▪ Players alternate turns

▪ Compute each node’s minimax value: 
the best achievable utility against a 
rational (optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game 

Minimax values:
computed recursively

Game will 

be played 

out by 

following 

these states
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Minimax Implementation

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v



Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Base 

Case for 

recursion



Minimax Example

12 8 5 23 2 144 6

3 2 2MİNIMIZER

MAXIMIZER

3

Solution 

Path



Minimax Properties

Optimal against a perfect player.  Otherwise?

10 10 9 100

max

min

[Demo: min vs exp (L6D2, L6D3)]

10

Player may do mistakes. Not optimal, then select a different path stochastically.

Optimal

Path

Not 

Optimal

Demo 1: Min score by eaten by ghost in one step. (Minmax solution)

Demo 2: Not smart, taking random actions and takes risks. It might give better solutions at different runs. 



Video of Demo Min vs. Exp (Min)



Video of Demo Min vs. Exp (Exp)



Minimax Efficiency



Minimax Efficiency

▪ How efficient is minimax?
▪ Just like (exhaustive) DFS

▪ Time: O(bm)

▪ Space: O(bm)

▪ Example: For chess, b  35, m  100
▪ Exact solution is completely infeasible

▪ But, do we need to explore the whole 
tree?



Resource Limits

We can not explore the entire game tree because of finite computing power



Game Tree Pruning

The number of game states is exponential in the depth of the tree. No algorithm cancompletely

eliminate the exponent, but we can sometimes cut it in half, computing the correct minimax decision without 

examining every state by pruning  large parts of the tree that make no difference to the outcome. The 

particular technique we examine is called alpha–beta pruning.



Minimax Example

12 8 5 23 2 144 6

• To make use of our limited computation time, we can cut off the search early and apply a
heuristic evaluation function to states, effectively treating nonterminal nodes as if they were 
terminal.



Minimax Pruning

12 8 5 23 2 14

Maximizer will not select any nodes that has values less than 3, skip (prune) these nodes.

3

3

2



Alpha-Beta Pruning

▪ General configuration (MIN version)

▪ We’re computing the MIN-VALUE at some node n

▪ We’re looping over n’s children

▪ n’s estimate of the childrens’ min is dropping

▪ Who cares about n’s value?  MAX

▪ Let a be the best value that MAX can get at any choice 

point along the current path from the root

▪ If n becomes worse than a, MAX will avoid it, so we can 

stop considering n’s other children (it’s already bad 

enough that it won’t be played)

▪ MAX version is symmetric

MAX

MIN

MAX

MIN

a

n



Alpha-Beta Pruning

31



Alpha-Beta Pruning

32

we can infer that the value of the root is at least 3.



Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root



Alpha-Beta Implementation

34



Alpha-Beta Pruning Properties

10 10 0

max

min

• This pruning has no effect on minimax value computed for the root!

• Values of intermediate nodes might be wrong

• Important: children of the root may have the wrong value

• So the most naïve version won’t let you do action selection

• Good child ordering improves effectiveness of pruning

• With “perfect ordering”:

• Time complexity drops to O((2b)m/2) or better 𝑂 𝑏 + 0.5
𝑚+1

• Doubles solvable depth!

• Full search of, e.g. Chess, is still hopeless…

• With random ordering:

• The total number of nodes examined will be roughly O(b3m/4) for moderate b. 

• This is a simple example of meta-reasoning (computing about what to compute)



Alpha-Beta Quiz

8
4

8



Alpha-Beta Quiz 2

10

100 2 20

10 2

10



Resource Limits

We can not explore the entire game tree because of finite computing power.



Resource Limits

▪ Problem: In realistic games, cannot search to leaves!

▪ Another Solution: Depth-limited search
▪ Instead, search only to a limited depth in the tree
▪ Replace terminal utilities with an evaluation function for non-

terminal positions

▪ Example:
▪ Suppose we have 100 seconds, can explore 10K nodes / sec
▪ So can check 1M nodes per move
▪ - reaches about depth 8 – decent chess program

▪ Guarantee of optimal play is gone

▪ More plies makes a BIG difference

▪ Another method: Use iterative deepening for an anytime 
algorithm where you go level by level depending on your 
computing power. ? ? ? ?

-1 -2 4 9

4

min

max

-2 4



Depth Matters

▪ Evaluation functions are always 
imperfect

▪ The deeper in the tree the evaluation 
function is buried, the less the quality 
of the evaluation function matters

▪ An important example of the tradeoff 
between complexity of features and 
complexity of computation

▪ Better evaluation functions requires 
more time and produces better results 
by going deeper levels of the search 
tree

▪ Demo 1: evaluation function with 2 
levels of depth

▪ Demo 1: evaluation function with 10 
levels of depth

[Demo: depth limited (L6D4, L6D5)]



Video of Demo Thrashing (depth d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D6)]



Why Pacman Starves

▪ A danger of replanning agents!
▪ He knows his score will go up by eating the dot now (west, east)

▪ He knows his score will go up just as much by eating the dot later (east, west)

▪ There are no point-scoring opportunities after eating the dot (within the horizon, two here)

▪ Therefore, waiting seems just as good as eating: he may go east, then back west in the next 
round of replanning!



Video of Demo Thrashing -- Fixed (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D7)]



Heuristic Alpha-Beta Tree Search

▪ To make use of our limited computation time, we can cut off the search early and apply a 
heuristic evaluation function to states, effectively treating nonterminal nodes as if they were 
terminal.

▪ In other words, we replace the UTILITY function with EVAL, which estimates a state’s  utility. 
▪ We also replace the terminal test by a cutoff test, which must return true for terminal states, 

but is otherwise free to decide when to cut off the search, based on the search depth and any 
property of the state that it chooses to consider. 

▪ That gives us the formula H-MINIMAX(s, d) for the heuristic minimax value of state s at search 
depth d

44



Evaluation Functions

• A heuristic evaluation function EVAL(s; p) returns 

an estimate of the expected utility of state s to 

player p, just as the heuristic functions of 

Chapter 3 return an estimate of the distance to 

the goal. 

• For terminal states, it must be that EVAL(s; 

p)=UTILITY(s; p) and 

• For nonterminal states, the evaluation must be 

somewhere between a loss and a win: 

UTILITY(loss; p)   EVAL(s; p)   UTILITY(win; p).



Evaluation Functions

▪ Beyond those requirements, what makes for a good evaluation function? 
First, the computation must not take too long! (The whole point is to search 
faster.) 

▪ Second, the evaluation function should be strongly correlated with the actual 
chances of winning. 

▪ One might well wonder about the phrase “chances of winning.”

▪ For example, 
▪ chess is not a game of chance: we know the current state with certainty, and no dice 

are involved; if neither player makes a mistake, the outcome is predetermined. 

▪ But if the search must be cut off at nonterminal states, then the algorithm will 
necessarily be uncertain about the final outcomes of those states (even though that 
uncertainty could be resolved with infinite computing resources).

46



Evaluation Functions : Features

▪ Most evaluation functions work by calculating Features various features of 
the state—for example, in chess, we would have features for the number of 
white pawns, black pawns, white queens, black queens, and so on. 

▪ The features, taken together, define various categories or equivalence classes 
of states: the states in each category have the same values for all the 
features.

▪ In principle, the expected value can be determined for each category of states, 
resulting in an evaluation function that works for any state. 

▪ In practice, this kind of analysis requires too many categories and hence too 
much experience to estimate all the probabilities. Instead, most evaluation 
functions compute separate numerical contributions from each feature and 
then combine them to find the total value

47



Evaluation Functions

▪ Evaluation functions score non-terminals in depth-limited search

▪ Ideal function: returns the actual minimax value of the position
▪ In practice: typically weighted linear sum of features:

▪ e.g.  f1(s) = (num white queens – num black queens), etc.



Evaluation for Pacman

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function), smart ghosts coordinate (L6D6,7,8,10)]

- Check evaluation function, change the evaluation or your institution if it does not produce good results.

- Find smart evaluation functions.



Video of Demo Smart Ghosts (Coordination)



Video of Demo Smart Ghosts (Coordination) – Zoomed In



Video of Demo: Limited Depth (2)



Video of Demo: Limited Depth (10)



Uncertain Outcomes



Worst-Case vs. Average Case

10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not an adversary!

-Agent(s) don’t play optimal. They plays 

stochastically

- Agent may throw a dice for a move

- Agent not so clever

-Add chance nodes (circles)

-Find the weighted average for chance 

-We can  calculate the expected value of a 

position: the average over all Expected 

value possible outcomes of the chance 

nodes.

• Stochastic games bring us a little closer to 

the unpredictability of real life by including a 

random element, such as the throwing of 

dice.

• Backgammon is a typical stochastic game 

that combines luck and skill.



Expectimax Search

▪ Why wouldn’t we know what the result of an action will be?
▪ Explicit randomness: rolling dice
▪ Unpredictable opponents: the ghosts respond randomly
▪ Actions can fail: when moving a robot, wheels might slip

▪ Values should now reflect average-case (expectimax) 
outcomes, not worst-case (minimax) outcomes

▪ Expectimax search: compute the average score under 
optimal play
▪ Max nodes as in minimax search
▪ Chance nodes are like min nodes but the outcome is uncertain
▪ Calculate their expected utilities
▪ I.e. take weighted average (expectation) of children

▪ Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes

10 4 5 7

max

chance

10 10 9 100

[Demo: min vs exp (L7D1,2)]



Video of Demo Minimax vs Expectimax (Min)



Video of Demo Minimax vs Expectimax (Exp)



Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v



Expectimax Pseudocode

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v 5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10



Expectimax Example

8

12 9 6 03 2 154 6

4 78

Assume that all probablities are equal



Expectimax Pruning?

12 93 2

• Can we apply pruning ? No. 

The last value in a node can be very large and change the average.



Depth-Limited Expectimax

…

…

492 362 …

400 300

Estimate of true 
expectimax value 

(which would 
require a lot of 

work to compute)

Stop earlier 

without going to 

all the way to the 

bottom.

You need a good 

evaluation 

function that 

gives you an 

approximate 

value (estimate)



Probabilities



Reminder: Probabilities

▪ A random variable represents an event whose outcome is unknown
▪ A probability distribution is an assignment of weights to outcomes

▪ Example: Traffic on freeway
▪ Random variable: T = whether there’s traffic
▪ Outcomes: T in {none, light, heavy}
▪ Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

▪ Some laws of probability (more later):
▪ Probabilities are always non-negative
▪ Probabilities over all possible outcomes sum to one

▪ As we get more evidence, probabilities may change:
▪ P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60
▪ We’ll talk about methods for reasoning and updating probabilities later

0.25

0.50

0.25



▪ The expected value of a function of a random variable is the 
average, weighted by the probability distribution over 
outcomes

▪ Example: How long to get to the airport?

Reminder: Expectations

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +



▪ In expectimax search, we have a probabilistic model 
of how the opponent (or environment) will behave in 
any state
▪ Model could be a simple uniform distribution (roll a die)
▪ Model could be sophisticated and require a great deal of 

computation
▪ We have a chance node for any outcome out of our control: 

opponent or environment
▪ The model might say that adversarial actions are likely!

▪ For now, assume each chance node magically comes 
along with probabilities that specify the distribution 
over its outcomes

What Probabilities to Use?

Having a probabilistic belief about 
another agent’s action does not mean 

that the agent is flipping any coins!



Quiz: Informed Probabilities

▪ Let’s say you know that your opponent is actually running a depth 2 minimax, using the 
result 80% of the time, and moving randomly otherwise

▪ Question: What tree search should you use?  

0.1          0.9

▪ Answer: Expectimax!
▪ To figure out EACH chance node’s probabilities, 

you have to run a simulation of your opponent

▪ This kind of thing gets very slow very quickly

▪ Even worse if you have to simulate your 
opponent simulating you…

▪ … except for minimax, which has the nice 
property that it all collapses into one game tree



Modeling Assumptions



The Dangers of Optimism and Pessimism

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it’s not likely



Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

[Demos: world assumptions (L7D3,4,5,6)]

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman



Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

[Demos: world assumptions (L7D3,4,5,6)]

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman



Video of Demo World Assumptions
Random Ghost – Expectimax Pacman



Video of Demo World Assumptions
Adversarial Ghost – Minimax Pacman



Video of Demo World Assumptions
Adversarial Ghost – Expectimax Pacman



Video of Demo World Assumptions
Random Ghost – Minimax Pacman



Other Game Types



Mixed Layer Types

▪ E.g. Backgammon

▪ Expectiminimax

▪ Environment is an 
extra “random 
agent” player that 
moves after each 
min/max agent

▪ Each node 
computes the 
appropriate 
combination of its 
children



Example: Backgammon

▪ Dice rolls increase b: 21 possible rolls with 2 dice

▪ Backgammon  20 legal moves

▪ Depth 2 = 20 x (21 x 20)3 = 1.2 x 109

▪ As depth increases, probability of reaching a given 
search node shrinks

▪ So usefulness of search is diminished

▪ So limiting depth is less damaging

▪ But pruning is trickier…

▪ Historic AI: TDGammon uses depth-2 search + very 
good evaluation function + reinforcement learning: 
world-champion level play

▪ 1st AI world champion in any game!

Image: Wikipedia



Multi-Agent Utilities

▪ What if the game is not zero-sum, or has multiple players?

▪ Generalization of minimax:
▪ Terminals have utility tuples
▪ Node values are also utility tuples
▪ Each player maximizes its own component
▪ Can give rise to cooperation and

competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

in a three-player game with players A, B, and C, a vector 

(vA;vB;vC)is associated with each node.

5,1,7 5,2,5

5,2,5

5,2,5

1,6,6 6,1,2

6,1,2



Multi-Agent Utilities

81
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