COE 4213564
Introduction to Artificial Intelligence
Markov Decision Processes

Many slides are adapted from CS 188 (http://ai.berkeley.edu), CS 322, CIS 521, CS 221, CS182, CS4420.

Non-Deterministic Search

* Chapter 16 focuses on the computational issues involved in
making decisions in a stochastic Environment.

* It works on sequential decision problems that incorporate
utilities, uncertainty, and sensing, and include search and
planning problems as special cases.

* A sequential decision problem for a fully observable,
stochastic environment with a Markovian transition model
and additive rewards is called a Markov decision process.

* Markov decision Process (MDP) consists of a set of states
(with an initial state s;); a set ACTIONS(s) of actions in each
state; a transition model P(s’ | s;a); and a reward function
R(s,a, s’).

* Transitions are Markovian that means the probability of
reaching state s’ from s depends only on s and not on the
history of earlier states.

* MDPs are non-deterministic search problems.

Example: Grid World

= A maze-like problem
= The agent livesin a grid
= Walls block the agent’s path

= The interaction with the environment terminates when the
agent reaches one of the goal states, marked +1 or —1.

= The actions available to the agent in each state are given by
ACTIONS(s), sometimes abbreviated to A(s).

" |nthe 4x3 environment, the actions in every state are Up
(North), Down (South), Left (West), and Right (East).

= |f the environment were deterministic, a solution would be
easy:

[Up, Up, Right, Right, Right].
Unfortunately, the environment won’t always go along with

this solution, because the actions are unreliable (non-
deterministic)

0.1

0.1

Example: Grid World

We are in a non-deterministic, stochastic or noisy
environment.

Noisy movement: actions do not always go as planned

= With 80% of the time, the action Up (North) takes place
(if there is no wall there)

= With 10% of the time, the agent moves Left (West) or Right
(East)

= |f there is a wall in the direction the agent would have been
taken, the agent stays there

The transition model (or just “model,” when the meaning is clear)
describes the outcome of each action in each state.

Here, the outcome is stochastic, so we write transition functions

P(s’ | s, a) (or T(s ,a, s’)) for the probability of reaching state s’ if 0.8

action a is done in state s.

We will assume that transitions are Markovian: the probability of 0.1 0.1

reaching s’ from s depends only on s and not on the history of
earlier states.

Example: Grid World

The agent receives rewards each time step
= Small “living” reward each step (can be negative) 3
= Big rewards come at the end (good or bad)

To complete the definition of the task environment, we must specify the

utility function for the agent. Because the decision problem is sequential,

the utility (reward) function will depend on a sequence of states and 2
actions.

For every transition from s to s’ via action a, the agent receives a reward
Reward R(s, a, s’). The rewards may be positive or negative, but they are
bounded by -Rmax and +Rmax. 1

For our particular example, the reward is -0.04 for all transitions except
those entering terminal states (which have rewards +1 and —1). The utility of
an environment history is just (for now) the sum of the rewards received.

For example, if the agent reaches the +1 state after 10 steps, its total utility

will be (9 x -0.04)+1=0.64. The negative reward of —0.04 gives the agent an 0.8
incentive to reach (4,3) quickly, so our environment is a stochastic
generalization of the search problems of Chapter 3. 0.1 0.1

Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

An MDP is defined by:

m Asetofstatess €S
m AsetofactionsaceA
= A transition function T(s, a, s’)

= Probability that a from sleadsto s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

MDPs are non-deterministic search problems
= One way to solve them is with expectimax search
= We’ll have a new tool soon

[Demo — gridworld manual intro (L8D1)]

Video of Demo Gridworld Manual Intro

What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St—i—l = 3”575 — StaAt — Ay, St—1 = 8t—1,At—1, ...5 = So)

Andrey Markov
P(St_|_1 — S”St = Sy, A, = CLt) (1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)

Policies

In deterministic single-agent search problems, we
wanted an optimal plan, or sequence of actions,
from start to a goal as a solution.

In MDPs, a solution is called a policy that will take
the agent from start state to goal state.

It is traditional to denote a policy by T,

and 7 (s) is the action recommended by the policy
7 for state s.
For MDPs, we want an optimal policy t*: S - A

= A policy & gives an action for each state

= An optimal policy is one that maximizes expected utility Optimal policy when R(s, a, s’) =-0.03

if followed. for all non-terminals s
= An explicit policy defines a reflex agent

Expectimax didn’t compute entire policies
" |t computed the action for a single state only

Optimal Policies

Example: Racing

Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward 0-5

Slow

Overheated

Racing Search Tree

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

(s,a) is
a g-state

(s,a,s) called a transition

T(s,a,s’) =P(s’ |s,a)

R(s,a,s’) é\

We have rewards
associated with transitions.

You sum the rewards as
you go along the path

Utilities of Sequences

What preferences should an agent have over reward sequences?

More or less?

Now or later?

Sooner is better

Utilities of Sequences

[1, 2, 2]

[0, O, 1]

or

or

[2, 3, 4]

[1, 0, O]

Discounting

" |t’s reasonable to maximize the sum of rewards

" |t's also reasonable to prefer rewards now to rewards later. We use a
discount factor 7Y which is a number between 0 and 1.

= One solution: values of rewards decay exponentially

x\%
©$ 9 .6

1 v 8

Worth Now Worth Next Step Worth In Two Steps

Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

= Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge

= Example: discount of 0.5

»= Reward 1 at 15t step, 2 at the 2"9, 3 at
the 3 steps

= U([1,2,3]) = 1*1 + 0.5%2 + 0.25*3
= U([1,2,3]) < U([3,2,1])

Stationary Preferences

= A policy that depends on the time is called
nonstationary.

= An optimal action depends only on the current state, r
and then an the optimal policy is stationary.)

= Theorem: if we assume stationary preferences over a
sequence of rewards:

Reward sequences
[a’17 az, . -] ~ [bl’ 62’ o] /I_ of a’s areqbetter

:H: sequences of b’s.

[r,al,ag,...] ~— [’I“, blij,...] Add a new reward r
to sequences

= Wherer is the additional reward
" Then: there are only two ways to define utilities

= Additive utility: U([rg,71,72,...]) =m0 +r1+1r0+---

= Discounted utility:

U(lrg,71,72,...]) =rg+~yr1 + 727"2 .

Quiz: Discounting

= Given:

= Actions: East, West, and Exit (only available in exit states a, e)
= Thereis a reward of 10 at state a and 1 at state. a b C d e
= Transitions: deterministic

10 1

" Quiz 1: Fory =1, what is the optimal policy?

10 1

" Quiz 2: Fory=0.1, what is the optimal policy?

For Quiz 2 on state d:
- Sum rewards
- Gotoeast:0+y*1=0.1fromd.
- Gotowest:0+y*0+y2* 0 +vy3*10 =0.01 from d.
- So itis better to go to east in you are in state d
- In other states b and c, go to west

= Quiz 3: For which y are West and East equally good when in state d?
v=1/sqrt(10)

Infinite Utilities?!

= Problem: What if the game lasts forever? Do we get infinite rewards?

= if the environment does not contain a terminal state, or if the agent never
reaches one, then all environment histories will be infinitely long, and
utilities with additive undiscounted rewards will generally be infifinite

= 3 Solutions:
" Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (m depends on time left)

= Discounting:use0O<y<1
@)

— t
U(lro,..-mo0]) = > "1t < Rmax/(1 —7)
t=0
= Sum of rewards are bounded (R, _, : Maximum reward)
= Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will eventually be
reached (like “overheated” for racing)

Recap: Defining MDPs

" Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
" Transitions P(s’|s,a) (or T(s,a,s’)))
= Rewards R(s,a,s’) (and discount 7) 7 8,3,8

"= MDP quantities so far:
= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

Solving MDPs

In this section, we present two different algorithms for solving MDPs:
- value iteration, and
- policy iteration.

Optimal Quantities

"= The value (utility) of a state s:

V7(s) = expected utility starting in s and A 553
acting optimally state

a (s, a)is a
" The value (utility) of a g-state (s,a): B g-state
Q’(s,a) = expected utility starting out S\ T N
having taken action a from state s and 58,5 (s,a,8") is a
(thereafter) acting optimally / g transition

" The optimal policy:
n"(s) = optimal action from state s

[Demo — gridworld values (L8D4)]

Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Snapshot of Demo — Gridworld Q Values

MKI

WWWW "

Discount = 0.9

Values of States

* Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards
" This is just what expectimax computed!

= Recursive definition of value: ,
V*(s) = maxQ*(s, a)

Q*(s,a) => T(s,a, s {R(s, a,s’) + *yV*(s’)]

V*i(s) = mngT(s, a,s’) {R(S,CL, s + ’)/V*(S/)}

S

Racing Search Tree

- Search Tree with 2 iterations

Racing Search Tree

We play the game long
time, not stop after 2
iterations

Some branches are the
same (repetitions)

Use caching or bottom-
up dynamic
programming

VAT TMREERI TR CERTEORE TN T

Racing Search Tree

We're doing way too much
work with expectimax!

Problem: States are repeated

= |dea: Only compute needed
guantities once

Problem: Tree goes on forever fl fl m fl fl m fl m

= |dea: Do a depth-limited L) IR ER EREEEERN

computation, but with increasing
= Note: deep parts of the tree

eventually don’t matterif y<1 THTTREETLLL TR TR LL THITRLLL

Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps

= Equivalently, it’s what a depth-k expectimax would give from s

& &

1

[Demo — time-limited values (L8D6)]

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

0.72) 1.00

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

1.00

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=4

Cridworld Display

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

Y
.H

Y
“u

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Cridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Cridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

k=9

Cridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

* Values converge
and

e don’t change
much after
certain number
of iterations

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Computing Time-Limited Values (Compute v,, v, v,, ...)

Q-

Vi() Vi(@) VM‘“)]

=

S

U e e e

VO || O Y | VO | O O Y VO O i

THITRIN IR LI nh\h“h‘i“ THITRLLL

=~

VO (o

[
[
(v
[
[

Value lteration

Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vit1(s) maaxZT(s, a,s’) {R(s,a, s + ’YV]{(S,)}

S

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Max (Q2(cool, slow) = 1+2,

Qa(coolias = (2422 y2=35) | RRCEIRRTO. le: Value Iteration

Overheated

Assume no discount!

Vieg1(s) « mC{:IXZT(s, a,s’) [R(s, a,s’) + 'ka(s’)]

Max (Q1(cool, slow) = 1, Max (Q1(warm, slow) = 1,
Q1(cool,fast) = 2))

Q1l(warm,fast) = -10))

Example: Value Iteration

Bellman Update Rule: Vi+1(s) « max z P(s'|s,a)[R(s,a,s") + yVi(s")]

s'es

Example MDP Vo Vs
;|| Rewards given when |§L . 0 0 0 0 3 0 0 0 +1

in terminal state

! rewa}:fzg: gﬁf:o.z ! 0 0 0 0 . 0 0 0 0

1 2 3 4 1 2 _4 1 2 3 4

Start with V(s) = 0

Example: Value Iteration

eration
Bellman Update Rule: Vit1(s) « max Z P(s'|s,a)[R(s,a,s") + yVi(s")]
S€S9.72
Example MDP Optimal action V,
Rewards given when \L Billloe U
a w -~
* || in terminal state r . . 0 +1
=0.9, living
l reward=0, noise=0.2 ! 0 0 0 0 - 0 0 0 0
1 2 3 4 1 2 3 4 1 2 3 4

V2({3,3)) « Xores P(s'1(3,3), right) [r({3,3), right,s") + 0.9V;(s")]

Bellman Update Rule: Vi+1(s) « max Z P(s'|s,a)[R(s,a,s") + yVi(s")]

s’es
Example MDP v, v,
Rewards given when KL —
’ in terminal state r . 0 +1 3 +1 k
1 r=0.9, living
reward=0, noise=0.2 l 0 0 0 0 . 0 0 0 0
1 2 3 4 1 2 3 a 4 E 5 .

* Information propagates outward from terminal states

GridWorld: Dynamic Programming Demo

= https://cs.stanford.edu/people/karpathy/reinforcejs/eridworld
dp.html

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

The Bellman Equations

= Definition of “optimal utility” via expectimax recurrence

gives a simple one-step lookahead relationship amongst
optimal utility values

V*(s) = max Q* (s, a)

Q*(s,0) = Y T(s,0,8) [R(s,a,8) + V(&)

V*i(s) = m(;?XZT(S’ a,s’) [R(S,a, s + ’}/V*(Sl)}

= These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over.

= The Bellman equation is the basis of the value iteration
algorithm for solving MDPs.

Value lteration

= Bellman equations characterize the optimal values:

V*(s) = mC?XZT(S, a,s’) [R(s,a, s") + f}/V*(s')}

= Value iteration computes them:

Vit1(s) maf;lXZT(s, a,s’) {R(s,a,, s + ’YV]{(S,)}

= Value iteration is just a fixed point solution method
= ...though the V, vectors are also interpretable as time-limited values

Convergence*

How do we know the V| vectors are going to converge?

Vi(s) Vit1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V, and V,,, can be viewed as depth
k+1 expectimax results in nearly identical search trees

= The difference is that on the bottom layer, V,,, has actual
rewards while V, has zeros

= That last layer is at best all Ry,

" |tisatworst Ry, / \ /

» But everything is discounted by y* that far out
= SoV,andV,,, are at most (y* * max|R|) different
= So as kincreases, the values converge

Value iteration algorithm

function VALUE-ITERATION(mdp, €) returns a utility function
inpuis: mdp, an MDP with states 5, actions A(5), transition model P(s'|s.a),
rewards R{s,a,s"), discount -y
£, the maximum error allowed in the utihity of any state
local variables: I7, U7, vectors of utilities for states in 8, initially zero
&, the maximum relative change in the utility of any state

repeat
o, 10
for each state s in 5 do
U'[5] ¢« maxg a5y Q-VALUE(mdp, 5, a, L)
if |L7[s] — Uls]| = & them § — |U'[s] — U'[s]|
until & < (1 —y)/ v
return LF

Figure 16.6 The value iteration algonthm for calculatng utilities of states. The termination
condition 15 from Equation (16.12).

Policy Methods

Policy Evaluation

Fixed Policies

Do the optimal action Do what 1 says to do

~"s,a,S

\\
\\
\\
’ '
A s

= Expectimax trees max over all actions to compute the optimal values

= |f we fixed some policy nt(s), then the tree would be simpler — only one action per state

= .. though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy m:

V™(s) = expected total discounted rewards starting in s and following &t

Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,m(s),s)R(s,7(s),8) + V(5]

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Bad Policy Good Policy

Policy Evaluation

How do we calculate the V’s for a fixed policy nt?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

VE(s) =0 /()
Vi1 (s) « YT (s, (), $)[R(s, 7(s), 8') + Vi ()]

S

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)

Policy Extraction

Computing Actions from Values

Let’s imagine we have the optimal values V*(s)

How should we act?

=" |t’s not obvious!

We need to do a mini-expectimax (one step)

7*(s) = arg Q’laXZT(S, a,s')[R(s,a,s) +~vV*(s)]

S

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

" Let’s imagine we have the optimal g-values: MW
AN VZN
= How should we act? W.W
= Completely trivial to decide! g !

m*(s) = arg max Q*(s, a) %%

" |mportant lesson: actions are easier to select from g-values than values!

Policy Iteration

Problems with Value lteration

= Value iteration repeats the Bellman updates:

Vieg1(s) < mngT(s, a,s) [R(s,a, s + WV]{(S’)}

S

= Problem 1: It’s slow — O(S?A) per iteration

" Problem 2: The “max” at each state rarely changes

= Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

0.72) 1.00

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

1.00

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=4

Cridworld Display

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

Y
.H

Y
“u

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Cridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Cridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

k=9

Cridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= |t's still optimal!

= Can converge (much) faster under some conditions

Policy Iteration

= Evaluation: For fixed current policy =, find values with policy evaluation:

= [terate until values converge:

ka_zl'_l(s) — > T(s,m(s),s") [R(s, mi(s),s") + Vkm(sl)}

= |mprovement: For fixed values, get a better policy using policy extraction
= One-step look-ahead:

mi4+1(s) = arg maXZT(s, a,s’) [R(s, a,s’) + nyWi(sl)}

S

Policy iteration algorithm

function POLICY-ITERATION(rmdp) returns a policy
inpuis: mdp, an MDP with states §, actions A(s), transition model P{s"|5.a)
local variables: U7, a vector of utilities for states in 5, initially zero
m, a policy vector indexed by state, initially random

repeat
U+—PoLicy-EvaLuaTioN(w, U, mdp)
unchanged? +— true
for each state £ in § do
a* +— argmax Q-VALUE(mdp, s, a, U]
as Alx)
if Q-VALUE(mdp,s.a*, ') = Q-WALUE(mdp, s, w[s], L") then
5] +—a*; unchanged? «+— false
until unchaneged?
refurm

Figure 16.9 The policy iteration algorithm for calculating an optimal policy.

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
* The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

= S0 you want to....
= Compute optimal values: use value iteration or policy iteration
= Compute values for a particular policy: use policy evaluation
= Turn your values into a policy: use policy extraction (one-step lookahead)

" These all look the same!
" They basically are — they are all variations of Bellman updates
" They all use one-step lookahead expectimax fragments
* They differ only in whether we plug in a fixed policy or max over actions

Double Bandits

Blue slot machine gives you S1
when you pull the lever

Red slot machine gives you SO or $2
when you pull the lever

Double-Bandit MDP

= Actions: Blue, Red 4)

No discount

= States: Win, Lose 025 <0 100 time steps

Both states have
the same value

Offline Planning

= Solving MDPs is offline planning 4 No discount)
" You determine all quantities through computation 100 time steps
" You need to know the details of the MDP Both states have
the same value

" You do not actually play the game!

4 N

Value
Play Red 150
Play Blue 100

o /

Let’s Play!

S2 $2 S0 $2 $2
S2 $2 SO0 SO0 SO

Online Planning

= Rules changed! Red’s win chance is different.

Let’s Play!

SO SO SO $2 SO
$2 SO SO SO SO

What Just Happened?

= That wasn’t planning, it was learning!
= Specifically, reinforcement learning
= There was an MDP, but you couldn’t solve it with just computation
" You needed to actually act to figure it out

" |[mportant ideas in reinforcement learning that came up
= Exploration: you have to try unknown actions to get information
= Exploitation: eventually, you have to use what you know
= Regret: even if you learn intelligently, you make mistakes
= Sampling: because of chance, you have to try things repeatedly
= Difficulty: learning can be much harder than solving a known MDP

Next Time: Reinforcement Learning!

	Slide 1: COE 4213564 Introduction to Artificial Intelligence
	Slide 2: Non-Deterministic Search
	Slide 3: Example: Grid World
	Slide 4: Example: Grid World
	Slide 5: Example: Grid World
	Slide 6: Grid World Actions
	Slide 7: Markov Decision Processes
	Slide 8: Video of Demo Gridworld Manual Intro
	Slide 9: What is Markov about MDPs?
	Slide 10: Policies
	Slide 11: Optimal Policies
	Slide 12: Example: Racing
	Slide 13: Example: Racing
	Slide 14: Racing Search Tree
	Slide 15: MDP Search Trees
	Slide 16: Utilities of Sequences
	Slide 17: Utilities of Sequences
	Slide 18: Discounting
	Slide 19: Discounting
	Slide 20: Stationary Preferences
	Slide 21: Quiz: Discounting
	Slide 22: Infinite Utilities?!
	Slide 23: Recap: Defining MDPs
	Slide 24: Solving MDPs
	Slide 25: Optimal Quantities
	Slide 30: Snapshot of Demo – Gridworld V Values
	Slide 31: Snapshot of Demo – Gridworld Q Values
	Slide 34: Values of States
	Slide 35: Racing Search Tree
	Slide 36: Racing Search Tree
	Slide 37: Racing Search Tree
	Slide 38: Time-Limited Values
	Slide 39: k=0
	Slide 40: k=1
	Slide 41: k=2
	Slide 42: k=3
	Slide 43: k=4
	Slide 44: k=5
	Slide 45: k=6
	Slide 46: k=7
	Slide 47: k=8
	Slide 48: k=9
	Slide 49: k=10
	Slide 50: k=11
	Slide 51: k=12
	Slide 52: k=100
	Slide 53: Computing Time-Limited Values (Compute v0, v1, v2 , …)
	Slide 54: Value Iteration
	Slide 55: Value Iteration
	Slide 56: Example: Value Iteration
	Slide 57: Example: Value Iteration
	Slide 58: Example: Value Iteration
	Slide 59
	Slide 60: GridWorld: Dynamic Programming Demo
	Slide 61: The Bellman Equations
	Slide 62: The Bellman Equations
	Slide 63: Value Iteration
	Slide 64: Convergence*
	Slide 65: Value iteration algorithm
	Slide 66: Policy Methods
	Slide 67: Policy Evaluation
	Slide 68: Fixed Policies
	Slide 69: Utilities for a Fixed Policy
	Slide 70: Example: Policy Evaluation
	Slide 71: Example: Policy Evaluation
	Slide 72: Policy Evaluation
	Slide 73: Policy Extraction
	Slide 74: Computing Actions from Values
	Slide 75: Computing Actions from Q-Values
	Slide 76: Policy Iteration
	Slide 77: Problems with Value Iteration
	Slide 78: k=0
	Slide 79: k=1
	Slide 80: k=2
	Slide 81: k=3
	Slide 82: k=4
	Slide 83: k=5
	Slide 84: k=6
	Slide 85: k=7
	Slide 86: k=8
	Slide 87: k=9
	Slide 88: k=10
	Slide 89: k=11
	Slide 90: k=12
	Slide 91: k=100
	Slide 92: Policy Iteration
	Slide 93: Policy Iteration
	Slide 94: Policy iteration algorithm
	Slide 95: Comparison
	Slide 96: Summary: MDP Algorithms
	Slide 97: Double Bandits
	Slide 98: Double-Bandit MDP
	Slide 99: Offline Planning
	Slide 100: Let’s Play!
	Slide 101: Online Planning
	Slide 102: Let’s Play!
	Slide 103: What Just Happened?
	Slide 104: Next Time: Reinforcement Learning!

