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Reinforcement Learning



Reinforcement Learning

▪ Basic idea:
▪ Receive feedback in the form of rewards

▪ Agent’s utility is defined by the reward function

▪ Must (learn to) act so as to maximize expected rewards

▪ All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r



Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]



Example: Learning to Walk

Initial
[Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004]



Example: Learning to Walk

Training
[Video: AIBO WALK – training][Kohl and Stone, ICRA 2004]



Example: Learning to Walk

Finished
[Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]



Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER – 40s]



The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]



Video of Demo Crawler Bot



Reinforcement  learning (RL)

▪ In Reinforcement  learning (RL), an agent interacts with the world and 
periodically receives rewards (or, in the terminology of psychology, 
reinforcements) that reflect how well it is doing.

▪ For example, in chess the reward is 1 for winning, 0 for losing, and 12 for a 
draw. We have already seen the concept of rewards in Chapter 16 for Markov 
decision processes (MDPs). 

▪ Indeed, the goal is the same in reinforcement learning: maximize the 
expected sum of rewards. Reinforcement learning differs from “just solving 
an MDP” because the agent is not given the MDP as a problem to solve; the 
agent is in the MDP. 

▪ It may not know the transition model or the reward function, and it has to act 
in order to learn more.



Reinforcement Learning

▪ Still assume a Markov decision process (MDP):

▪ A set of states s  S

▪ A set of actions (per state) A

▪ A model T(s,a,s’)

▪ A reward function R(s,a,s’)

▪ Still looking for a policy (s)

▪ New twist: don’t know T or R

▪ I.e. we don’t know which states are good or what the actions do

▪ Must actually try actions and states out to learn



Offline (MDPs) vs. Online (RL)

Offline Solution:
Given an MDP, you have to 

find the optimal solution (Go 
always straight).

Online Learning: You have to do 
learning. Choose an action and 

see what happens and learn 
about the world. 



Model-Based Learning



Model-Based Learning

▪ Model-Based Idea:
▪ You assume a model and learn the parameters of that model.
▪ Learn an approximate model based on experiences
▪ Solve for values as if the learned model were correct

▪ Step 1: Learn empirical MDP model
▪ Count outcomes s’ for each s, a
▪ Normalize to give an estimate of
▪ Discover each when we experience (s, a, s’)

▪ Step 2: Solve the learned MDP
▪ For example, use value iteration, as before



Example: Model-Based Learning

Input Policy 

Assume:  = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

2/2

3/4

1/4

The estimated probablity of C to D = 3 transitions / in 4 episodes 



Model Based Learning vs Model Free Learning
Example: Expected Age

Goal: Compute expected age of cs188 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known distribution P(A)

Why does this 
work?  Because 
samples appear 
with the right 
frequencies.

Why does this 
work?  Because 
eventually you 
learn the right 

model.



Learning from Rewards

▪ Hundreds of different reinforcement learning algorithms have been devised, 
and many of them can employ as tools a wide range of learning methods

▪ These approaches can be categorized as follows:
▪ Model-based reinforcement learning: In these approaches the agent uses a 

transition learning model of the environment to help interpret the reward signals 
and to make decisions about how to act. Model-based reinforcement learning 
systems often learn a utility (also called value) function U(s), defined in terms of the 
sum of rewards from state s onward. (learn the MDP model (T and R), or an 
approximation of it. )

▪ Model-free reinforcement learning: In these approaches the agent neither knows 
nor learns a transition model for the environment. Instead, it learns a more direct 
representation of how to behave. (– derive the optimal policy without explicitly 
learning the model.)



Model-Free Learning

• In reinforcement learning (RL), a model-free 

algorithm (as opposed to a model-based one) 

is an algorithm which does not use 

the transition probability distribution (and 

the reward function) associated with 

the Markov decision process (MDP),[1] which, 

in RL, represents the problem to be solved. 

• The transition probability distribution (or 

transition model) and the reward function are 

often collectively called the "model" of the 

environment (or MDP), hence the name 

"model-free". 

• A model-free RL algorithm can be thought of 

as an "explicit" trial-and-error algorithm

https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/w/index.php?title=Model-based_(reinforcement_learning)&action=edit&redlink=1
https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Model-free_(reinforcement_learning)#cite_note-sutton2018-1
https://en.wikipedia.org/wiki/Trial_and_error


Passive vs. Active learning 

▪ Passive learning 

▪ The agent acts based on a fixed policy π and tries to learn how good the 
policy is by observing the world go by 

▪ Analogous to policy evaluation in policy iteration

▪ Active learning 

▪ The agent attempts to find in an optimal (or at least good) policy by 
exploring different actions in the world

▪ Analogous to solving the underlying MDP



Summary of Key Ideas for Learning

▪ Online vs. Batch

▪ Learn while exploring the world, or learn from fixed batch of data

▪ Active vs. Passive

▪ Does the learner actively choose actions to gather experience? or, is a 
fixed policy provided?

▪ Model based vs. Model free

▪ Do we estimate T(s,a,s’) and R(s,a,s’), or just learn values/policy directly



Passive Reinforcement Learning

• The agent doesn’t know the 

transition model or the reward 

function.

• observe the reward in each 

state it is in.

• Like watching a video and 

learning from that video

• You don’t have any control

• Ex: A robot can jump in the fire 

pit and observe the reward it 

gets



Passive Reinforcement Learning

The agent executes a set of trials 



Passive Reinforcement Learning

▪ Simplified task: policy evaluation
▪ Input: a fixed policy (s)

▪ You don’t know the transitions T(s,a,s’)

▪ You don’t know the rewards R(s,a,s’)

▪ Goal: learn the state values

▪ In this case:
▪ Learner is “along for the ride”

▪ No choice about what actions to take

▪ Just execute the policy and learn from experience

▪ This is NOT offline planning!  You actually take actions in the world.



Direct Evaluation

▪ Goal: Compute values for each state under 

▪ Idea: Average together observed sample values

▪ Act according to 

▪ Every time you visit a state, write down what the 
sum of discounted rewards turned out to be

▪ Average those samples

▪ This is called direct evaluation



Example: Direct Evaluation

Input Policy 

Assume:  = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

A

B C D

E

+8 +4 +10

-10

-2

- Take the average of 

rewards from all 

episodes

- V  (c ) = 9+9+9-11) /4 
Episode 1:

From c to d: -1 (one move reward) + 10 (reward in d) = 9



Problems with Direct Evaluation

▪ What’s good about direct evaluation?

▪ It’s easy to understand

▪ It doesn’t require any knowledge of T, R

▪ It eventually computes the correct average values, 
using just sample transitions

▪ What bad about it?

▪ It wastes information about state connections

▪ Each state must be learned separately

▪ So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C 
under this policy, how can 
their values be different?



Why Not Use Policy Evaluation?

▪ Simplified Bellman updates calculate V for a fixed policy:
▪ Each round, replace V with a one-step-look-ahead layer over V

▪ This approach fully exploited the connections between the states
▪ Unfortunately, we need T and R to do it!

▪ Key question: how can we do this update to V without knowing T and R?
▪ In other words, how to we take a weighted average without knowing the weights?

(s)

s

s, (s)

s, (s),s’

s’



Better model-free Learning using sampling



Sample-Based Policy Evaluation?

▪ We want to improve our estimate of V by computing these averages:

▪ Idea: Take samples of outcomes s’ (by doing the action!) and average

(s)

s

s, (s)

s1's2' s3'

s, (s),s’

s'

Almost!  But we can’t 
rewind time to get sample 
after sample from state s.



Temporal Difference Learning

▪ Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

▪ Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

This is  a running average calculation.



Exponential Moving Average

▪ Exponential moving average 

▪ The running interpolation update:

▪ Makes recent samples more important:

▪ Forgets about the past (distant past values were wrong anyway)

▪ Decreasing learning rate (alpha) can give converging averages



Example: Temporal Difference Learning

Assume:  = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

B,east C,-2:    -1                               0             1/2                 -2                        0

C,east D,-2:     3                               0             1/2                  -2                       8



Problems with TD Value Learning

▪ TD value learning is a model-free way to do policy evaluation, mimicking 
Bellman updates with running sample averages

▪ However, if we want to turn V values into a (new) policy, we’re sunk. We 
don’t know how to update our policy that maximizes it:

▪ Idea: learn Q-values, not values

▪ Makes action selection model-free too!

a

s

s, a

s,a,s’

s’



Active Reinforcement Learning

• A passive learning agent has a fixed policy that 

determines its behavior. 

• An active learning agent gets to decide what actions to 

take



Active Reinforcement Learning

▪ Full reinforcement learning: optimal policies (like value iteration)
▪ You don’t know the transitions T(s,a,s’)

▪ You don’t know the rewards R(s,a,s’)

▪ You choose the actions now

▪ Goal: learn the optimal policy / values

▪ In this case:
▪ Learner makes choices!

▪ Fundamental tradeoff: exploration vs. exploitation

▪ This is NOT offline planning!  You actually take actions in the world and 
find out what happens…



Detour: Q-Value Iteration

▪ Value iteration: find successive (depth-limited) values
▪ Start with V0(s) = 0, which we know is right
▪ Given Vk, calculate the depth k+1 values for all states:

▪ But Q-values are more useful, so compute them instead
▪ Start with Q0(s,a) = 0, which we know is right
▪ Given Qk, calculate the depth k+1 q-values for all q-states:



Q-Learning

▪ Q-Learning: sample-based Q-value iteration

▪ Learn Q(s,a) values as you go

▪ Receive a sample (s,a,s’,r)

▪ Consider your old estimate:

▪ Consider your new sample estimate:

▪ Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]



Video of Demo Q-Learning -- Gridworld



Video of Demo Q-Learning -- Crawler



The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy iteration

Evaluate a fixed policy  Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, * VI/PI on approx. MDP

Evaluate a fixed policy  PE on approx. MDP

Goal Technique

Compute V*, Q*, * Q-learning

Evaluate a fixed policy  Value Learning



Model-Free Learning

▪ Model-free (temporal difference) learning

▪ Experience world through episodes (experiences)

▪ Update estimates each transition

▪ Over time, updates will mimic Bellman updates

r

a

s

s, a

s’

a’

s’, a’

s’’

Stream of

Experiences



Q-Learning

▪ We’d like to do Q-value updates to each Q-state (Bellman 
equation for Q-values):

▪ But can’t compute this update without knowing T, R

▪ Instead, compute average as we go
▪ Receive a sample transition (s,a,r,s’)

▪ This sample suggests

▪ But we want to average over results from (s,a)  (Why?)

▪ So keep a running average



Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal policy -- even 
if you’re acting suboptimally!

▪ This is called off-policy learning

▪ Caveats:

▪ You have to explore enough

▪ You have to eventually make the learning rate

small enough

▪ … but not decrease it too quickly

▪ Basically, in the limit, it doesn’t matter how you select actions (!)



Video of Demo Q-Learning Auto Cliff Grid



Exploration vs. Exploitation

Usual place 

you go for 

lunch. You are 

pretty happy 

every time.

New place you try for 

lunch. It might be 

risky. Without trying, 

you will never know



How to Explore?

▪ Several schemes for forcing exploration
▪ Simplest: random actions (-greedy)

▪ Every time step, flip a coin

▪ With (small) probability , act randomly

▪ With (large) probability 1-, act on current policy

▪ Problems with random actions?
▪ You do eventually explore the space, but keep 

thrashing around once learning is done

▪ One solution: lower  over time

▪ Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)] 
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]



Video of Demo Q-learning – Epsilon-Greedy – Crawler 



Video of Demo Q-learning – Manual Exploration – Bridge Grid 



Exploration Functions

▪ When to explore?
▪ Random actions: explore a fixed amount
▪ Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring
▪ Exploration functions help us decay the exploration

automatically.

▪ Exploration function
▪ Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

▪ The term  k/n (bonus) will decrease when you visit a state more. 
▪ Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]



Video of Demo Q-learning – Exploration Function – Crawler 



Regret

▪ Even if you learn the optimal policy, 
you still make mistakes along the way!

▪ Regret is a measure of your total 
mistake cost: the difference between 
your (expected) rewards, including 
youthful suboptimality, and optimal 
(expected) rewards

▪ Minimizing regret goes beyond 
learning to be optimal – it requires 
optimally learning to be optimal

▪ Example: random exploration and 
exploration functions both end up 
optimal, but random exploration has 
higher regret



Approximate Q-Learning

▪ So far we've looked at exact 
methods-- that is methods 
that give us the exact solution 
we need if we run it long 
enough. 

▪ Now we're going to look at 
ways of approximating the 
solution.



Generalizing Across States

▪ Basic Q-Learning keeps a table of all q-values

▪ In realistic situations, we cannot possibly learn 
about every single state!
▪ Too many states to visit them all in training

▪ Too many states to hold the q-tables in memory

▪ Instead, we want to generalize:
▪ Learn about some small number of training states from 

experience

▪ Generalize that experience to new, similar situations

▪ This is a fundamental idea in machine learning, and we’ll 
see it over and over again.

[demo – RL pacman]



Video of Demo Q-Learning Pacman – Tiny – Watch All



Video of Demo Q-Learning Pacman – Tiny – Silent Train



Video of Demo Q-Learning Pacman – Tricky – Watch All

-You have 

discovered that 

some of states are 

bad. 

-You have learned 

nothing about bad 

entry from your 

past experience, if 

you use regular 

tabular

Q-learning



Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)] 
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover 
through experience 

that this state is bad:

In naïve q-learning, 
we know nothing 
about this state:

Or even this one!



Feature-Based Representations

▪ You have to learn from experiences.
▪ Solution: describe a state using a vector of 

features (properties)
▪ Features are functions from states to real numbers 

(often 0/1) that capture important properties of the 
state

▪ Example features:
▪ Distance to closest ghost
▪ Distance to closest dot
▪ Number of ghosts
▪ 1 / (dist to dot)2

▪ Is Pacman in a tunnel? (0/1)
▪ …… etc.
▪ Is it the exact state on this slide?

▪ Can also describe a q-state (s, a) with features (e.g. 
action moves closer to food)



Linear Value Functions

▪ Our V or Q function is a weighted sum of feature values.

▪ Using a feature representation, we can write a q function (or value function) for any 
state using a few weights:

▪ Advantage: our experience is summed up in a few powerful numbers

▪ Disadvantage: states may share features but actually be very few and different in 
value!



Approximate Q-Learning

▪ Q-learning with linear Q-functions:

▪ Intuitive interpretation:
▪ Adjust weights of active features
▪ E.g., if something unexpectedly bad happens, blame the features that were on: 

disprefer all states with that state’s features

▪ Formal justification: online least squares

Exact Q’s

Approximate Q’s



Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D10)]

2 features: dots and distance to ghost (SGT)



Video of Demo Approximate Q-Learning -- Pacman

-We see that maybe 

with about 10 episodes 

so far,  it's already 

playing pretty well.

-Compare this with 

tabular Q-learning 

where we need 

hundreds if not 

thousands of episodes 

before we learned 

anything.



Q-Learning and Least Squares
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Linear Approximation: Regression*
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Optimization: Least Squares*

0 20
0

Error or “residual”

Prediction

Observation



Minimizing Error*

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”
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Degree 15 polynomial

Overfitting: Why Limiting Capacity Can Help*



Policy Search



Policy Search

▪ Problem: often the feature-based policies that work well (win games, maximize 
utilities) aren’t the ones that approximate V / Q best
▪ Q-learning’s priority: get Q-values close (modeling)

▪ Action selection priority: get ordering of Q-values right (prediction)

▪ We’ll see this distinction between modeling and prediction again later in the course

▪ Solution: learn policies that maximize rewards, not the values that predict them

▪ Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing 
on feature weights



Policy Search

▪ Simplest policy search:

▪ Start with an initial linear value function or Q-function

▪ Nudge each feature weight up and down and see if your policy is better than before

▪ Problems:

▪ How do we tell the policy got better?

▪ Need to run many sample episodes!

▪ If there are a lot of features, this can be impractical

▪ Better methods exploit lookahead structure, sample wisely, change 
multiple parameters…



Conclusion

▪ We’re done with Part I: Search and Planning!

▪ We’ve seen how AI methods can solve 
problems in:
▪ Search

▪ Constraint Satisfaction Problems

▪ Games

▪ Markov Decision Problems

▪ Reinforcement Learning
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