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Introduction

* Qutputs of sequential logic depend on current
and prior input values — it has memory.

e Some definitions:

— State: all the information about a circuit necessary
to explain its future behavior

— Latches and flip-flops: state elements that store
one bit of state

— Synchronous sequential circuits: combinational
logic followed by a bank of flip-flops

SEQUENTIAL LOGIC DESIGN
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Sequential Circuits

g[ « Give sequence to events
. Have memory (short-term)

O« Use feedback from output to input to store
-~ Information
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<8 State Elements

O

-y

w - - - -
E‘ . The state of a circuit influences its future
_  behavior

(5.« State elements store state

9{ — Bistable circuit

;t'! — SR Latch

—_ — D Latch

Eﬁ — D Flip-flop

3

Wy
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U elements

B¢« Two outputs: Q, O
- No Inputs
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i « Fundamental building block of other state
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- Q=0:

- Q=1

SEQUENTIAL LOGIC DESIGN
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then Q = 1, Q = 0 (consistent)

then (5 =0, Q =1 (consistent)
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Bistable Circuit Analysis

 Consider the two possible cases:

o
=
o
=

« Stores 1 bit of state in the state variable, Q (or Q)
 But there are no inputs to control the state




5 SR (Set/Reset) Latch

a

W .,

Q: SR Latch R@Q
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Eg  Consider the four possible cases:

>4 -S=1,R=0
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SR Latch Analysis

-S=1,R=0: - ROLQ
thenQ=1and Q=0 0
s1]ner 0
-S5S=0,R=1: )
thenQ=1and Q=0 N
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SR Latch Analysis

-S=1 R=0: - ROLQ
thenQ=1and Q=0 0
Set the output (1> m 05
-S=0,R=1: iy
thenQ=1and Q=0 1£Q
Reset the output
0 N2t
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SR Latch Analysis

-S=0,R=0: Qprey = 0 Quev = 1

then Q = Qorev RO m, 0o R L m. 1 g

~S=1,R=1: ngQ
thenQ=0,0=0 °
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SR Latch Analysis

-S=0,R=0: Qprey = 0 Quev = 1

thenQ=Q,,, r2 QQ R-C _Q

Memory!

~S=1,R=1: ngQ
thenQ=0,0=0 °

Invalid State . : m. Loy
Q#NOTQ




SR Latch Symbol

« SR stands for Set/Reset Latch
— Stores one bit of state (Q)

 Control what value Is being stored with S, R
Inputs

— Set: Make the output 1 SSF;&?SP
(S=1,R=0,Q=1)

— Reset: Make the output 0 =
(S=0,R=1,Q=0) 179

SEQUENTIAL LOGIC DESIGN
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« Two Inputs: CLK, D
— CLK: controls when the output changes
— D (the data input): controls what the output changes to

 Function D Latch
— When CLK =1, Symbol
D passes through to Q (transparent) CI|_K
— When CLK =0,
. . -D  QF
Q holds its previous value (opaque) o

« Avoids invalid case when
Q#NOTQ
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5 D Latch Internal Circuit
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5 D Latch Internal Circuit

2 |
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D Flip-Flop

* Inputs: CLK, D D Flip-Flop

« Function ~Symbols

— Samples D on rising edge of CLK |

 When CLK rises from0to1, D D
passes through to Q

 Otherwise, Q holds its previous
value

— Q changes only on rising edge of
CLK

 Called edge-triggered
 Activated on the clock edge

Q
Q




D Flip-Flop Internal Circuit

» Two back-to-back latches (L1 and L2) controlled by
complementary clocks

« When CLK =0 ok
— L1 is transparent O<
— L2 is opaque CLK CLK
— D passes through to N1 DD Q N1 D QFQ
. When CLK = 1 L1 QF L2 QFQ
— L2 s transparent
— L1 is opagque

— N1 passes through to Q

« Thus, on the edge of the clock (when CLK rises from 0—1)
— D passes through to Q

SEQUENTIAL LOGIC DESIGN
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D Latch vs. D Flip-Flop

—D Q_ —

D

Q
Q

D

Q (latch)

ENTIAL

Q (flop)

SEQU

© Digital Design and Computer Architecture, 2™ Edition, 2012

Chapter 3 <19>




N

|
CLK

-D Q- D

Q
Q

Q
Q

LOGIC DESIG|

D Latch vs. D Flip-Flop

EN T.IA. L
RGO

\

bt

/W
4 .

Qo) A

SEQU

© Digital Design and Computer Architecture, 2™ Edition, 2012

Chapter 3 <20>

ELSEVIER



N

CLK

TIAL LOGIC DESIG

),

EN
©
;
T
O

—Q3

SEQU
|

v
: \an'

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <21> SE



<
O
a
Ly
Q
@
- way
O

TIAL LO

EN

—re

SEQU

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <22>

Enabled Flip-Flops

* Inputs: CLK, D, EN
— The enable input (EN) controls when new data (D) is stored

e Function

— EN = 1: D passes through to Q on the clock edge
— EN = 0: the flip-flop retains its previous state

Internal
Circuit
EN CLK Symbol
| |
—0
D Q—Q -D  Qr
D-—+H1 EN
|
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H « Inputs: CLK, D, Reset

Qe Function:

G — Reset =1: Qisforcedto0

Q

-

= Symbol
| ymbols

:

Wy

> 1D Qf

H Reset

(V" |
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Resettable Flip-Flops

— Reset = 0: flip-flop behaves as ordinary D flip-flop
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Resettable Flip-Flops

« TWwo types:
— Synchronous: resets at the clock edge only
— Asynchronous: resets immediately when Reset = 1

« Asynchronously resettable flip-flop requires
changing the internal circuitry of the flip-flop

« Synchronously resettable flip-flop?

SEQUENTIAL LOGIC DESIGN
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Resettable Flip-Flops

« TWwo types:
— Synchronous: resets at the clock edge only
— Asynchronous: resets immediately when Reset = 1

« Asynchronously resettable flip-flop requires
changing the internal circuitry of the flip-flop
« Synchronously resettable flip-flop?

Internal
Circuit
CLK

D_
Reset — > D Q—Q
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¢ Function:

G]

—Set=1: Qissetto1

— Set = 0: the flip-flop behaves as ordinary D flip-flop

Symbols

Set
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5 Sequential Logic

Ty

w . . . . .

H * Sequential circuits: all circuits that aren’t
o combinational

g'J? « A problematic circuit:

::f X Y Z Ji
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Sequential Logic

* Sequential circuits: all circuits that aren’t
combinational

A problematic circuit:

GIC DESIGN

012345678t|me(ns)

ENTIAL LO

No inputs and 1-3 outputs

Astable circuit, oscillates

Period depends on inverter delay

It has a cyclic path: output fed back to input

SEQU
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Synchronous Sequential Logic Design

» Breaks cyclic paths by inserting registers
 Registers contain state of the system

« State changes at clock edge: system synchronized to the
clock

* Rules of synchronous sequential circuit composition:
— Every circuit element is either a register or a combinational circuit
— At least one circuit element is a register
— All registers receive the same clock signal
— Every cyclic path contains at least one register

« Two common synchronous sequential circuits
— Finite State Machines (FSMs)
— Pipelines

SEQUENTIAL LOGIC DESIGN
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Finite State Machine (FSM)

e Consists of: chx
— State register §—— S
Next Current
e Stores current state State State

» Loads next state at clock edge

— Combinational logic
« Computes the next state
« Computes the outputs

Next State Output
Logic Logic

A4 & @ boun
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Finite State Machines (FSMs)

» Next state determined by current state and inputs

« Two types of finite state machines differ in output logic:
— Moore FSM: outputs depend only on current state
— Mealy FSM: outputs depend on current state and inputs

GIC DESIGN

|
9 Moore FSM
wl CLK
q M next Yk next k N

g ; t tput
m:,, inputs f’éﬁfi state state "lggﬁg outputs
g Mealy FSM
0 CLK

: M noxt ) k next I K N

" tput

H |npUtS 7L Is;gfi state State O|l(;gF:g OUtpUtS

41

TR |
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E‘ FSM Example

0 .
E' » Traffic light controller

[
W — Traffic sensors: T,, Tz (TRUE when there’s traffic)
e e
G — Lights: L,, Lg %U Dining
O S | Hall
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 Inputs: CLK, Reset, T,, Tg
« Outputs: L,, Lg

= —

FSM Black Box

TIAL LOGIC DESIGN

CLK
|
T, — Tr_affic —— L,
Light
T, — Controller —— L;
W ‘
Reset
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FSM State Transition Diagram

gl « Moore FSM: outputs labeled in each state
. States: Circles

— Reset

O« Transitions: Arcs

v
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FSM State Transition Diagram

* Moore FSM: outputs labeled in each state
o States: Circles
* Transitions: Arcs

S1
L,: yellow
L,: red

SEQUENTIAL LOGIC DESIGN
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FSM State Transition Table

>

O

W

Wy

Q‘ Current

@Y State Inputs
oy

G

QX SO 0 X
:'.: S0 1 X
<L S1 X X
F S2 X 0
Ei S2 X 1
a( S3 X X
Wy

7Y
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FSM State Transition Table

>

O

A

L

Q‘ Current

@Y State Inputs

oy

Gl

QX SO 0 X S1
~dl

- SO 1 X S0
S: S1 X X S2
H S2 X 0 S3
,_,Z_li S2 X 1 S2
a( S3 X X S0
LWy

)
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FSM Encoded State Transition Table

Current State Inputs Next State

State Encoding

0 0 0 X
0 0 1 X S0 00
1 0 X 0 S2 10
1 0 X 1 S3 11
1 1 X X

SEQUENTIAL LOGIC DESIGN
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FSM Encoded State Transition Table

Current State Inputs Next State

State Encoding

0 0 0o | x| o] 1
0 0 1 | X |10 0 S0 09
0 1 X | x| 11| 0 Sl 01
1 0o | X | o] 1] 1 S2 10
1 0o | X | 1111 o0 33 1
1 1 X | x| o| o

S, =S, @85,

S'0=5;SoTa + S:S,Tg

SEQUENTIAL LOGIC DESIGN
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FSM Output Table
Current State Outputs

0 0 green 00
0 1 yellow 01
1 0 red 10
1 1

SEQUENTIAL LOGIC DESIGN
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Ei FSM Output Table

‘l

wn

W

‘aYdl Current State Outputs _
Output Encoding

4

| o o | oo | 1|0 green | 00

9{ o | 1| o 1] 1] o] |yelow o1

E: 1 | 1| 1|0 o] 1

E: Lo = il

:: Lao = 515

Q Lg =5

H Lgo = 5150
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Reset

state register
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FSM Schematic: Next State Logic
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Inputs next state logic
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N

FSM Schematic: Output Logic
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FSM State Encoding

 Binary encoding:
— 1.e., for four states, 00, 01, 10, 11
» One-hot encoding
— One state bit per state
— Only one state bit HIGH at once
— l.e., for 4 states, 0001, 0010, 0100, 1000

— Requires more flip-flops
— Often next state and output logic is simpler

SEQUENTIAL LOGIC DESIGN
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Moore vs. Mealy FSM

W-Lll » Alyssa P. Hacker has a snail that crawls down a paper tape

X

O

IC DESI

TIAL LO

EN

—re

SEQU

with 1°s and 0’s on it. The snail smiles whenever the last two
digits it has crawled over are 01. Design Moore and Mealy
FSMs of the snail’s brain.

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <47> ELSEIER



N

LOGIC DESIG|

Moore FSM

Mealy FSM

Reset
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Mealy FSM: arcs indicate input/output
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Moore FSM State Transition Table

“Ste
State  Inputs Next State State  Encoding

SO 00
S1 01
S2 10

R |k, [OlO0|0O0 |0
o |10 (k| |O |0
R O [P |O|FL,|O

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <49>



Moore FSM State Transition Table

“Ste
State  Inputs Next State State  Encoding

SEQUENTIAL LOGIC DESIGN

SO 00

0 0 0 0 1
0 0 1 0 0 Sl 01
0 | 1 0 0 1 g2 10
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0

S," = S,A

S, =A
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Moore FSM Output Table

Current State  Output
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o= 2 R RS FUEm =

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

Moore FSM Output Table

Current State  Output
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Mealy FSM State Transition & Output Table

Current Next
State Input  State Output

State Encoding

SO 00
S1 01

SEQUENTIAL LOGIC DESIGN
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Current NENG

State Input  State Output

R || O[O
R O[O
O, |[O|F

P [O|O | O

SEQUENTIAL LOGIC DESIGN
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Mealy FSM State Transition & Output Table

State Encoding

SO

00

S1

01

Chapter 3 <54>

P

ELSEVIER



N

Moore FSM Schematic
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Mealy FSM Schematic

#>Q S' 'S, ?Y
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Factoring State Machines

* Break complex FSMs into smaller interacting
FSMs

 Example: Modify traffic light controller to have
Parade Mode.
— Two more inputs: P, R

— When P =1, enter Parade Mode & Bravado Blvd
light stays green

— When R =1, leave Parade Mode

SEQUENTIAL LOGIC DESIGN
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= Unfactored FSM

L LOG
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Factored FSM

L,: yellow
L: red

OGIC DESIGN

bt

ENTIAL L

W

M+T,
Lights FSM
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FSM Design Procedure

Identify inputs and outputs
Sketch state transition diagram
Write state transition table
Select state encodings

For Moore machine:
1. Rewrite state transition table with state encodings
2. Write output table

6. For a Mealy machine:

1. Rewrite combined state transition and output table with state
encodings

7. Write Boolean equations for next state and output Ioglc
V¥ 8. Sketch the circuit schematic

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <62> ELSEVIER

EQUENTIAL LOGIC DESIGN




* Flip-flop samples D at clock edge
* D must be stable when sampled

« Similar to a photograph, D must be stable
around clock edge

 |f not, metastability can occur

SEQUENTIAL LOGIC DESIGN
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5 Input Timing Constraints

Wi - Setup time: tserp = time before clock edge data must be
Q stable (i.e. not changing)

E‘ - Hold time: t,,4 = time after clock edge data must be stable

o . Aperture time: t, = time around clock edge data must be
O( stable (ta = 1:setup T 1:hold)

)
Ell

' |
— CLK ,(
5 '
Wy | : ;

D XA QOOUOXX

S PR
H i 1:setup Ithold i
) < >

t

a
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Output Timing Constraints

O
-
Wi - Propagation delay: t,cq = time after clock edge that the
Q output Q Is guaranteed to be stable (i.e., to stop changing)
Ef « Contamination delay: toeq = time after clock edge that Q
O] might be unstable (i.e., start changing)
Q
~ CLK I
~ D
E Q i
| | |
2, <7 > |
Wy = | >
8 tIOCCI |
W
)
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Dynamic Discipline

« Synchronous sequential circuit inputs must be
stable during aperture (setup and hold) time
around clock edge

 Specifically, inputs must be stable
— at least tyy,, before the clock edge
— at least until t, 4 after the clock edge

SEQUENTIAL LOGIC DESIGN
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Dynamic Discipline

* The delay between registers has a
minimum and maximum delay, dependent

on the delays of the circuit elements

CLK CLK
| |

alhian | ¢ Imali

a) R1 R2

< : >
)I/_

I

I

I

CLK

|
o1 |

|
D2 |
(b)
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Setup Time Constraint

oy

V) . .
L« Dependson the maximum delay from register R
8[ through combinational logic to R2

==. * Theinput to register R2 must be stable at least t

8 before clock edge
CLK CLK

1

setup

)
E.! Ql( ¢ }DZ TC >
“':: R1 R2
2 l¢ T >l/_
= CLK
Ly | \ |
= QL | |
Q ORI o ot G
H | tpcq i tpd i tsetup |
[ €< »>< >
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Setup Time Constraint

Ty
vy | .
L. - Depends on the maximum delay from register R1
Q through combinational logic to R2
E: * The input to register R2 must be stable at least ¢,
8 before clock edge
| CLK K
~d Qi 102
<< L ¥ J T.2 tpcq T tpd + 1:setup
“':: R1 R2 t <
2 l< \TC >|Iy_ Pd =
, CLK
Wy | |
= QL | l
| . |
H 52 | mo<><><>§>@<>e< |
w :(tpcq);( tpd )§<tsetup ):
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Setup Time Constraint

V) | |
L. - Depends on the maximum delay from register R1
8[ through combinational logic to R2

==. * Theinput to register R2 must be stable at least t

O before clock edge

Q:y C%K C%K

—)

Si R1 R2

b~ T,

Zf l¢ >l/_
, CLK

Wy | \ |

= QL | |

Q D2 : W@W :

W T i |

w I(pcq)i( pd )E( setup >

© Digital Design and Computer Architecture, 2™ Edition, 2012

setup

c = *pcq
tog < T — (t

T >t T tpd T 1:setup

pcy T tsetup)

(Theq + Lewp): SEQUENCingG overhead
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<=8 Hold Time Constraint

hold

Ty
V) L .
L. - Depends on the minimum delay from register R1
Q through the combinational logic to R2
E:  The input to register R2 must be stable for at least
O t, .. after the clock edge
9{ CLK CLK
Q1 b2
o] ¢
SI R1 - g R2 thOId =
- | |
Zf CLK | \ }I’_
o 1 | |
= =P .
S T
M[ |tccq tcd |
g |t |
|
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<=8 Hold Time Constraint

hold

T tcd

Ty
V) L .
L. - Depends on the minimum delay from register R1
Q through the combinational logic to R2
E:  The input to register R2 must be stable for at least
O t, .. after the clock edge
9{ CLK CLK
Q1 b2
o] ¢
<f R1 \ J Ro thold < tccq
—
- | I tcd >
Zf CLK | \ }I’_
o 1 | |
= =P .
S T
M[ |tccq tcd |
g |t |
|
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<=8 Hold Time Constraint

hold

Ty
V) L .
L. - Depends on the minimum delay from register R1
Q through the combinational logic to R2
E:  The input to register R2 must be stable for at least
O t, .. after the clock edge
9{ CLK CLK
Q1 b2
o] ¢
<f R1 \ J Ro thold < tccq T tcd
—
- | | tcd > 1:hold ) tccq
Zf CLK | \ }I’_
o 1 | |
= =P .
S T
M[ |tccq tcd |
g |t |
|
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e

-

Timing Analysis

—

-~

CLK

_|7\|
>
\/

A
U9
—

GIC DESIGN

ck  Timing Characteristics

N

_I7I_I7I

ot E ——— —

Loy =

tcd -

Setup time constraint:

SEQUENTIAL LO

© Digital Design and Computer Architecture, 2™ Edition, 2012

teeg =30ps
theg = 50 ps
toetup = 60 ps
X Y1X
L thoia = 70 PS
Yy
Q
g |: t,y =35ps
Ll t, =25ps

Hold time constraint:

tccq + tcd > thold ?

Ll
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Timing Analysis

m CLK cik  Timing Characteristics
7

Q[ _r a teeg = 30 ps
o b [
m‘ tsetup =60 PS
Q‘ qle 1 ) XY

| _r J 11 thow =70 ps
ol

D Y' MY

e | _|V - o
q- & |:tpd =35 ps
~i (@))
”‘[ o t, =25ps
2( t,q =3 X35 ps =105 ps
w.ui t.y=250ps
:( Setup time constraint: Hold time constraint:
U T.2 (50 + 105 + 60) ps = 215 ps tecg * teg ™ thotd ?
Wy f.=1/T.= 4.65 GHz (30 + 25) ps > 70 ps ? No!

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <75>



- . - m— —

W

SEQUENTIAL LOGIC DESIGN

Timing Analysis

Add buffers to the short paths:

CLK CLK

YA

|

_; C ] D XYX
15 W;y

Loy =

tcd -

Setup time constraint:

© Digital Design and Computer Architecture, 2™ Edition, 2012
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Timing Characteristics

teeg =30ps
theg =200pS
toetup = 60 PS
thoa =70 Ps
*?!i |: t,y =35ps
Ll t, =25ps

Hold time constraint:

tccq + tcd > thold ?




OGIC DESIGN

ENTIAL L

SEQU

Timing Analysis

Add buffers to the short paths:

CLK

\

t,q =3 X35 ps =105 ps
ty=2x25ps=>50ps

Setup time constraint:

T.2 (50 + 105 + 60) ps = 215 ps
f.=1/T.=4.65 GHz

© Digital Design and Computer Architecture, 2™ Edition, 2012

(30+50) ps>70ps ? Yes!

Chapter 3 <77>

Timing Characteristics

teeg =30ps
theg =200pS
toetup = 60 PS
thoa =70 Ps
*Sg': |: t,y =35ps
Ll t, =25ps

Hold time constraint:

tccq + tcd > thold ?




Clock Skew

The clock doesn’t arrive at all registers at same time

* Skew: difference between two clock edges

* Perform worst case analysis to guarantee dynamic
discipline is not violated for any register — many

registers in a system!
delay CLK

ENTIAL LOGIC DESIGN

8 CLK1 H/
= csef
W oLk [77f

Pe S
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Setup Time Constraint with Skew

gl * In the worst case, CLK2 is earlier than CLK1

U CLK1 CLK2
A S i
(

o R1 - R2
~I p ° >

CLKlﬂﬂkl AN ﬁ?’ T >

Q1

|
|
| R
D21 (0000000000
; o

> <>

pd setup “skew

TIAL

EN

—_—

t

SEQU
Y
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ENTIAL LO

SEQU

Setup Time Constraint with Skew

* |In the worst case, CLK2 is earlier than CLK1

CHKl CHKZ
QL[ D2
LY
R1 T R2
l¢ ¢ »l

Q1

|
|
. L
D2 | (000000000 |
| o
<t>:<t > <>

pcq pd tsetup tskew

CLKL1///J~ N\ i

© Digital Design and Computer Architecture, 2™ Edition, 2012

To> g+ Loy +
g <

setup
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skew
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ENTIAL LO

SEQU

Setup Time Constraint with Skew

* |In the worst case, CLK2 is earlier than CLK1

Cl_lKl CI_|K2
Qi D2,
L @ ) 7
R1 T R2
l < pl
CLK1 A\ /)Y
I o
Q1 T
. L]
D2 | 000000
| I
<« >« > PP
tqu tIOd ~ 'setup ‘skew

© Digital Design and Computer Architecture, 2™ Edition, 2012

Tc = 1:pcq t 1:pd t tsetup t tskew
1:pd = Tc o (tpcq T tsetup t tskew)
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Hold Time Constraint with Skew

* In the worst case, CLK2 is later than CLK1

CLK1 CLK2
| |

= —

R1 R2

|
CLK1Q{YI AL [/
CLK2///f N\ /)Y tCCq
|

cd

TIAL LOGIC DESIGN

I
> QL MOUAX |
L I 1
Ly D2 | QOOOIARAX
:‘ tccq : tcd
Q |
H tske\lv thold

A o ey
:-13 3
bl )
it
3 T
)
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LOGIC DESIGN

I
CLKleI ARRNN s

Hold Time Constraint with Skew

In the worst case, CLK2 is later than CLK1

CLK1 CLK2
| |

R1 R2

o]
vy Wﬂff eag * Ted > Thota * Lskew
E' Q1 XPOONK | tcd >

‘ | .

L D21 XXOGOXXKRRRX
§ tCCq: tcd

I

H tske:v thold
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Hold Time Constraint with Skew

* In the worst case, CLK2 is later than CLK1

CLK1 CLK2
| |

R1 R2

I
CLKleI ARRNN s

LOGIC DESIGN

o]

<( CLK2///f T\ /77}' tccq + tcd > 1:hold T tskew

~ ' | >t o+t — t

E' QL OO | th hold © ‘skew — ‘ccq
¢ | .

L b2 | X OO

:‘ tCCq: tcd

Q |

H tske\lv thold
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Violating the Dynamic Discipline

L.« Asynchronous (for example, user)
. . . - t t
* inputs might violate the dynamic ;="

Ef discipline kK

: : !

| CLK <«

) —Q ° g
. Q |

3

21 D /=

Wy o ’ 8

=

Q D /T =

Ly 5 277 §

17,1
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Metastability

« Bistable devices: two stable states, and a metastable
state between them

* Flip-flop: two stable states (1 and 0) and one
metastable state

o |If flip-flop lands in metastable state, could stay there
for an undetermined amount of time

metastable

stable stable

@ @




Flip-Flop Internals

 Flip-flop has feedback: if Q is somewhere between
1 and 0O, cross-coupled gates drive output to either

rail (1 or 0) R m. o
s N9

« Metastable signal: if it hasn’t resolved to 1 or 0

« If flip-flop input changes at random time, probability
that output Q Is metastable after waiting some time, t:
P(tes > 1) = (T/T;)

t.. : timetoresolvetolorO
Ty, T: properties of the circuit

SEQUENTIAL LOGIC DESIGN
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GN

Metastability

A

Wi . Intuitively:

Q‘- T,/T.: probability input changes at a bad time (during aperture)
Ei I:)(tres > t) = (TO/ Tc) et

O

O» T: time constant for how fast flip-flop moves away from

] metastability

E! I:)(tres > t) = (T0/ Tc) eVt

m::

2;  In short, Iif flip-flop samples metastable input, if you wait
g long enough (t), the output will have resolved to 1 or 0
D with high probability.

Wy

o'

Sy y
&3
$) al
o * \y
&
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E Synchronizers
-
V) | . .
L.« Asynchronous inputs are inevitable (user interfaces,
Q systems with different clocks interacting, etc.)
E « Synchronizer goal: make the probability of failure (the
G output Q still being metastable) low
9‘ « Synchronizer cannot make the probability of failure O
)
L CLK
= \
'~ n
o
Ly
)

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <89>



Synchronizer Internals

 Synchronizer: built with two back-to-back flip-flops
 Suppose D is transitioning when sampled by F1
» Internal signal D2 has (T; - t,,) time to resolve to 1

GIC DESIGN

| or O CLK CLK
9’ D m b2 m Q
- | F1 F2

: : T, :
3 ﬂ ~
L CLK I \ I
ZQ ! , I
Wy 5 I\ / |
D, : / metastable \ ﬂi\ :
o o | i
% < e«

t 't t

res setup pcqI
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Synchronizer Probability of Failure

Ly For each sample, probability of failure is:
| P(failure) = (T,/T,) e (Te- tawlie

G‘ CLK CLK
0 5 D2 o
=l F1 F2
—) - T, -
qf < >
oy I |
= _/\ _ /
ME D2 : metastable i/ :
= | /.
o o S
Wy | ' =

| : |
% T e

res setup pcq
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Synchronizer Mean Time Between Failures

« |f asynchronous input changes once per second,
probability of failure per second is P(failure).

 |f input changes N times per second, probability of failure
per second Is:

P(failure)/second = (NT,/T,) e(Te- Lewl/

 Synchronizer fails, on average, 1/[P(failure)/second]
 Called mean time between failures, MTBF:

MTBF = 1/[P(failure)/second] = (TJ/NT,) e(Te- tew)/

SEQUENTIAL LOGIC DESIGN
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Example Synchronizer

N =10 events per second
« What is the probability of failure? MTBF?

- - . - — —

TIAL LOGIC DESIGN

EN

SEQU

© Digital Design and Computer Architecture, 2™ Edition, 2012

CLK CLK
| |
D D2 0
F1 F2
e Suppose: T. =1/500MHz=2ns t =200ps
Ty =150ps Lerp = 100 ps
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et

GN

Example Synchronizer

A

m CLK CLK

Q[ D D2 0
@ F1 F2

oy

m" e Suppose: T. =1/500MHz=2ns t =200ps
Q‘ Ty =150ps Lerp = 100 ps

N =10 events per second
« What is the probability of failure? MTBF?

— — —_—

v

=5.6 x 106

ENTIAL L

SEQU

© Digital Design and Computer Architecture, 2™ Edition, 2012

P(failure) = (150 ps/2 ns) e-(19 s)/200 ps

P(failure)/second = 10 x (5.6 x 10%)
=5.6 x 10~/ second
MTBF = 1/[P(failure)/second] = 5 hours
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<8 Parallelism

G

E;

A~ * Two types of parallelism:

Ef — Spatial parallelism

G » duplicate hardware performs multiple tasks at once
9{ — Temporal parallelism

! » task Is broken into multiple stages
Sz » also called pipelining

FE » for example, an assembly line

g[

o

)

P
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Parallelism Definitions

» Token: Group of Iinputs processed to produce
group of outputs

 Latency: Time for one token to pass from
start to end

» Throughput: Number of tokens produced
per unit time

Parallelism increases throughput

SEQUENTIAL LOGIC DESIGN
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== Parallelism Example

O

Ty

e

W'Q"'[ « Ben Bitdiddle bakes cookies to celebrate traffic light
“F controller installation

=« 5minutes to roll cookies

8 15 minutes to bake
=d ¢ What is the latency and throughput without parallelism?

v

ENTIA

—re

SEQU
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Parallelism Example

« Ben Bitdiddle bakes cookies to celebrate traffic light
controller installation

5 minutes to roll cookies
e 15 minutes to bake
What is the latency and throughput without parallelism?

Latency =5 + 15 = 20 minutes = 1/3 hour
Throughput = 1 tray/ 1/3 hour = 3 trays/hour

SEQUENTIAL LOGIC DESIGN
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Parallelism Example

« What is the latency and throughput if Ben
uses parallelism?

— Spatial parallelism: Ben asks Allysa P. Hacker to
help, using her own oven

— Temporal parallelism:
* two stages: rolling and baking
* He uses two trays

« While first batch is baking, he rolls the
second batch, etc.

SEQUENTIAL LOGIC DESIGN
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Spatial Parallelism

Latency:
time to
first tray

>
O
W
W
Ql 0 5 10 15 20 25
&7
o
G
Q

Tray 1
e
<. 2 Tray2 Alyssa 1
g2
%) £ Tray3
| o
] Tray 4 Alyssa 2
o] \
E:
> Latency = ?
W

Throughput = ?

SEQU
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Spatial Parallelism

Tray 1
_c_;csé Tray 2 Alyssa 1
(%c:% Tray 3
l * Tray 4 Alyssa 2
!
> Latency =5 + 15 = 20 minutes = 1/3 hour
g: Throughput = 2 trays/ 1/3 hour = 6 trays/hour
W
)
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Latency:
time to
first tray
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Latency:
time to
first tray

Temporal Parallelism

—
)
<
[ERN

Tray 2

Temporal
Parallelism

—
)

<
w

-«

Latency = ?
Throughput = ?

SEQUENTIAL LOGIC DESIGN
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Temporal Parallelism

Temporal
Parallelism

Latency:
time to
first tray

0 5 10 15 20 25 30 35 40 45 50

Latency =5 + 15 = 20 minutes = 1/3 hour
Throughput = 1 trays/ 1/4 hour = 4 trays/hour

Using both techniques, the throughput would be 8 trays/hour
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