- - . - — —

TIAL LOGIC DESIGN

EN

SEQU

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <1> 5;;

Chapter 3

Digital Design and Computer Architecture, 2" Edition

David Money Harris and Sarah L. Harris

‘ \an'

Chapter 3 :: Topics

° Application |[>"hello
¢ IntrOdUCtlon Software |world
. Ogerating @
* Latches and Flip-Flops e
Architecture ===
* Synchronous Logic Design e [
architecture <>

 Finite State Machines -

* Timing of Sequential Logic Dighl

Circuits

 Parallelism ialeg

Circuits

»
o
o

Physics

SEQUENTIAL LOGIC DESIGN

SN ‘.:’}:’
v Jal. ¢
« ‘\ ,

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <2> ES;Z

Introduction

* Qutputs of sequential logic depend on current
and prior input values — it has memory.

e Some definitions:

— State: all the information about a circuit necessary
to explain its future behavior

— Latches and flip-flops: state elements that store
one bit of state

— Synchronous sequential circuits: combinational
logic followed by a bank of flip-flops

SEQUENTIAL LOGIC DESIGN

At R e R
TN %
B %
2 Jal.
& o \4
)

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <3> ESE

Sequential Circuits

g[« Give sequence to events
. Have memory (short-term)

O« Use feedback from output to input to store
-~ Information

v

ENTIA

—re

SEQU

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <4>

<8 State Elements

O

-y

w - - - -
E‘ . The state of a circuit influences its future
_ behavior

(5.« State elements store state

9{ — Bistable circuit

;t'! — SR Latch

—_ — D Latch

Eﬁ — D Flip-flop

3

Wy

)

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <5>

|

U elements

B¢« Two outputs: Q, O
- No Inputs

o]

X 5

=
Wy

:(‘

o

(77

© Digital Design and Computer Architecture, 2™ Edition, 2012

25 Bistable Circuit

i « Fundamental building block of other state

YLy

Chapter 3 <6>

- Q=0:

- Q=1

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012

then Q = 1, Q = 0 (consistent)

then (5 =0, Q =1 (consistent)

Chapter 3 <7>

1

0

0

1

Bistable Circuit Analysis

 Consider the two possible cases:

o
=
o
=

« Stores 1 bit of state in the state variable, Q (or Q)
 But there are no inputs to control the state

5 SR (Set/Reset) Latch

a

W .,

Q: SR Latch R@Q
&

G ><

: Terle
ol S

Eg Consider the four possible cases:

>4 -S=1,R=0

S I

vy S=1R=1

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <8>

TIAL LOGIC DESIGN

EN

SEQU

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <9>

SR Latch Analysis

-S=1,R=0: - ROLQ
thenQ=1and Q=0 0
s1]ner 0
-S5S=0,R=1:)
thenQ=1and Q=0 N

oo

S m' =Q

N

= —

LOGIC DESIG

bt

ENTIAL

- SEQU

SR Latch Analysis

-S=1 R=0: - ROLQ
thenQ=1and Q=0 0
Set the output (1> m 05
-S=0,R=1: iy
thenQ=1and Q=0 1£Q
Reset the output
0 N2t

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <10> ELSEVIER

TIAL LOGIC DESIGN

EN

SEQU

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <11>

SR Latch Analysis

-S=0,R=0: Qprey = 0 Quev = 1

then Q = Qorev RO m, 0o R L m. 1 g

~S=1,R=1: ngQ
thenQ=0,0=0 °

= —

TIAL LOGIC DESIGN

EN

—

SEQU

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <12>

SR Latch Analysis

-S=0,R=0: Qprey = 0 Quev = 1

thenQ=Q,,, r2 QQ R-C _Q

Memory!

~S=1,R=1: ngQ
thenQ=0,0=0 °

Invalid State . : m. Loy
Q#NOTQ

SR Latch Symbol

« SR stands for Set/Reset Latch
— Stores one bit of state (Q)

 Control what value Is being stored with S, R
Inputs

— Set: Make the output 1 SSF;&?SP
(S=1,R=0,Q=1)

— Reset: Make the output 0 =
(S=0,R=1,Q=0) 179

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <13>

« Two Inputs: CLK, D
— CLK: controls when the output changes
— D (the data input): controls what the output changes to

 Function D Latch
— When CLK =1, Symbol
D passes through to Q (transparent) CI|_K
— When CLK =0,
. . -D QF
Q holds its previous value (opaque) o

« Avoids invalid case when
Q#NOTQ

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <14>

SEQUENTIAL LOGIC DESIGN

5 D Latch Internal Circuit

Q. T 5)RR Qe CLK

Q ae TP o

O D -)%s Q0 A
Q_

Q

]

S; CLK D|D S R|Q OQ

“": 0 X

E; 1 0

:} 1 1

o

17,1

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <15>

5 D Latch Internal Circuit

2 |

Q. T 5)RR Qe CLK

9 b QF

— S o0

O D s e 5
Q_

3

] o —

S CLK DD S R|Q Q

L: 0 X Y 0 0 Qprer—prev

Ef 1 0 1 0 1 0 1

3 1 1lo 1 ol1 o

2

"

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <16>

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <17>

D Flip-Flop

* Inputs: CLK, D D Flip-Flop

« Function ~Symbols

— Samples D on rising edge of CLK |

 When CLK rises from0to1, D D
passes through to Q

 Otherwise, Q holds its previous
value

— Q changes only on rising edge of
CLK

 Called edge-triggered
 Activated on the clock edge

Q
Q

D Flip-Flop Internal Circuit

» Two back-to-back latches (L1 and L2) controlled by
complementary clocks

« When CLK =0 ok
— L1 is transparent O<
— L2 is opaque CLK CLK
— D passes through to N1 DD Q N1 D QFQ
. When CLK = 1 L1 QF L2 QFQ
— L2 s transparent
— L1 is opagque

— N1 passes through to Q

« Thus, on the edge of the clock (when CLK rises from 0—1)
— D passes through to Q

SEQUENTIAL LOGIC DESIGN

; 4
P

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <18> S;:

N

LOGIC DESIG|

|
CLK

Ej__

CLK

D Latch vs. D Flip-Flop

—D Q_ —

D

Q
Q

D

Q (latch)

ENTIAL

Q (flop)

SEQU

© Digital Design and Computer Architecture, 2™ Edition, 2012

Chapter 3 <19>

N

|
CLK

-D Q- D

Q
Q

Q
Q

LOGIC DESIG|

D Latch vs. D Flip-Flop

EN T.IA. L
RGO

\

bt

/W
4 .

Qo) A

SEQU

© Digital Design and Computer Architecture, 2™ Edition, 2012

Chapter 3 <20>

ELSEVIER

N

CLK

TIAL LOGIC DESIG

),

EN
©
;
T
O

—Q3

SEQU
|

v
: \an'

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <21> SE

<
O
a
Ly
Q
@
- way
O

TIAL LO

EN

—re

SEQU

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <22>

Enabled Flip-Flops

* Inputs: CLK, D, EN
— The enable input (EN) controls when new data (D) is stored

e Function

— EN = 1: D passes through to Q on the clock edge
— EN = 0: the flip-flop retains its previous state

Internal
Circuit
EN CLK Symbol
| |
—0
D Q—Q -D Qr
D-—+H1 EN
|

<

G

—

)

H « Inputs: CLK, D, Reset

Qe Function:

G — Reset =1: Qisforcedto0

Q

-

= Symbol
| ymbols

:

Wy

> 1D Qf

H Reset

(V" |

© Digital Design and Computer Architecture, 2™ Edition, 2012

Resettable Flip-Flops

— Reset = 0: flip-flop behaves as ordinary D flip-flop

Chapter 3 <23>

Resettable Flip-Flops

« TWwo types:
— Synchronous: resets at the clock edge only
— Asynchronous: resets immediately when Reset = 1

« Asynchronously resettable flip-flop requires
changing the internal circuitry of the flip-flop

« Synchronously resettable flip-flop?

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <24>

Resettable Flip-Flops

« TWwo types:
— Synchronous: resets at the clock edge only
— Asynchronous: resets immediately when Reset = 1

« Asynchronously resettable flip-flop requires
changing the internal circuitry of the flip-flop
« Synchronously resettable flip-flop?

Internal
Circuit
CLK

D_
Reset — > D Q—Q

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <25>

SEQUENTIAL LOGIC DESIGN

¢ Function:

G]

—Set=1: Qissetto1

— Set = 0: the flip-flop behaves as ordinary D flip-flop

Symbols

Set

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <26>

5 Sequential Logic

Ty

w

H * Sequential circuits: all circuits that aren’t
o combinational

g'J? « A problematic circuit:

::f X Y Z Ji

< I { z

5 it s as e s ime
i

>

L

)

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <27> ELSEIER

Sequential Logic

* Sequential circuits: all circuits that aren’t
combinational

A problematic circuit:

GIC DESIGN

012345678t|me(ns)

ENTIAL LO

No inputs and 1-3 outputs

Astable circuit, oscillates

Period depends on inverter delay

It has a cyclic path: output fed back to input

SEQU

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <28> ELSEVIER

Synchronous Sequential Logic Design

» Breaks cyclic paths by inserting registers
 Registers contain state of the system

« State changes at clock edge: system synchronized to the
clock

* Rules of synchronous sequential circuit composition:
— Every circuit element is either a register or a combinational circuit
— At least one circuit element is a register
— All registers receive the same clock signal
— Every cyclic path contains at least one register

« Two common synchronous sequential circuits
— Finite State Machines (FSMs)
— Pipelines

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <29>

Finite State Machine (FSM)

e Consists of: chx
— State register §—— S
Next Current
e Stores current state State State

» Loads next state at clock edge

— Combinational logic
« Computes the next state
« Computes the outputs

Next State Output
Logic Logic

A4 & @ boun

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <30>

SEQUENTIAL LOGIC DESIGN

Finite State Machines (FSMs)

» Next state determined by current state and inputs

« Two types of finite state machines differ in output logic:
— Moore FSM: outputs depend only on current state
— Mealy FSM: outputs depend on current state and inputs

GIC DESIGN

|
9 Moore FSM
wl CLK
q M next Yk next k N

g ; t tput
m:,, inputs f’éﬁfi state state "lggﬁg outputs
g Mealy FSM
0 CLK

: M noxt) k next I K N

" tput

H |npUtS 7L Is;gfi state State O|l(;gF:g OUtpUtS

41

TR |

EVIER

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <31> ELS

E‘ FSM Example

0 .
E' » Traffic light controller

[
W — Traffic sensors: T,, Tz (TRUE when there’s traffic)
e e
G — Lights: L,, Lg %U Dining
O S | Hall
= S @LB
I

.; =
— NI A

Academic @ Ave.

Labs

EN

prg (D
Leep

EDI_

O

)

3

0)]

SEQU

Fields

£ A
:'E»S U, ,{
“A';L‘ &>

S
o

i) 4
s \%

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <32> 5;;

 Inputs: CLK, Reset, T,, Tg
« Outputs: L,, Lg

= —

FSM Black Box

TIAL LOGIC DESIGN

CLK
|
T, — Tr_affic —— L,
Light
T, — Controller —— L;
W ‘
Reset

SEQU

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <33>

AR ST
. _)f%
QODH ". i

« \ "

R AR 4
ELSEVIER

FSM State Transition Diagram

gl « Moore FSM: outputs labeled in each state
. States: Circles

— Reset

O« Transitions: Arcs

v

ENTIA

—re

SEQU

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <34>

FSM State Transition Diagram

* Moore FSM: outputs labeled in each state
o States: Circles
* Transitions: Arcs

S1
L,: yellow
L,: red

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <35>

FSM State Transition Table

>

O

W

Wy

Q‘ Current

@Y State Inputs
oy

G

QX SO 0 X
:'.: S0 1 X
<L S1 X X
F S2 X 0
Ei S2 X 1
a(S3 X X
Wy

7Y

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <36>

FSM State Transition Table

>

O

A

L

Q‘ Current

@Y State Inputs

oy

Gl

QX SO 0 X S1
~dl

- SO 1 X S0
S: S1 X X S2
H S2 X 0 S3
,_,Z_li S2 X 1 S2
a(S3 X X S0
LWy

)

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <37>

FSM Encoded State Transition Table

Current State Inputs Next State

State Encoding

0 0 0 X
0 0 1 X S0 00
1 0 X 0 S2 10
1 0 X 1 S3 11
1 1 X X

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <38>

FSM Encoded State Transition Table

Current State Inputs Next State

State Encoding

0 0 0o | x| o] 1
0 0 1 | X |10 0 S0 09
0 1 X | x| 11| 0 Sl 01
1 0o | X | o] 1] 1 S2 10
1 0o | X | 1111 o0 33 1
1 1 X | x| o| o

S, =S, @85,

S'0=5;SoTa + S:S,Tg

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <39>

FSM Output Table
Current State Outputs

0 0 green 00
0 1 yellow 01
1 0 red 10
1 1

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <40>

Ei FSM Output Table

‘l

wn

W

‘aYdl Current State Outputs _
Output Encoding

4

| o o | oo | 1|0 green | 00

9{ o | 1| o 1] 1] o] |yelow o1

E: 1 | 1| 1|0 o] 1

E: Lo = il

:: Lao = 515

Q Lg =5

H Lgo = 5150

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <41>

N

LOGIC DESIGI

FSM Schematic:

ENTIAL

SEQU

© Digital Design and Computer Architecture, 2™ Edition, 2012

State Register

|
Reset

state register

Chapter 3 <42>

FSM Schematic: Next State Logic

<
G
W
L
Ql \ S S
H l 1 1
O
Q
]
=
=

_l
O(LO
n

i

EN

Inputs next state logic

SEQU

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <43>

N

FSM Schematic: Output Logic

TIAL LOGIC DESIG

EN

output logic

SEQU

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <44>

outputs

' \550'

ELSEVIER

ELSEVIER

Chapter 3 <45>

)
> ()
q I
“““““““““““““ B 5=) I T I O O A
o ~ =
- -
I3 0
3
> A
O ~ 10
“““““““““““““ R N RPN
o S=EE
m ol 3] |3
> 0 w 14
O J AN A |
“““““““““““““ I N =t I
: SHERREE
- (7)) ™ o
S a0
O ST
“““““““““““““ R e
™~ ™
Q)
3]
> /NA
G ¢J -
““““““““““““““““ o L =
© u sl 2] |=
d ko] [9)
Q el |
(q0) o] NBLRE
\\\\\\\\\\\\\\\\\\\\\\\\\\\\ AL Ly
o]0 0 NMEERE
[d) ISR
(q0] S 5 |0 (2
o =mmmm C)[WN/NA
ol .y CRRRR R
< —
Q)
S L
o0 EENEEEaN
C BEEaani T N
™
(] ()
©
>
m C
\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ol L m
(N] o
T b
Q ~
> 5 8l |~
0 s g I3 B
= iy VTN
x
S TNSRLA
S y N} ~|]
O o S e
F /_ “““““ J ““““ L) K O Y A IO

© Digital Design and Computer Architecture, 2™ Edition, 2012

NDIS3d 31901 TVILNIND3IS

FSM State Encoding

 Binary encoding:
— 1.e., for four states, 00, 01, 10, 11
» One-hot encoding
— One state bit per state
— Only one state bit HIGH at once
— l.e., for 4 states, 0001, 0010, 0100, 1000

— Requires more flip-flops
— Often next state and output logic is simpler

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <46>

=
&'Jt

Moore vs. Mealy FSM

W-Lll » Alyssa P. Hacker has a snail that crawls down a paper tape

X

O

IC DESI

TIAL LO

EN

—re

SEQU

with 1°s and 0’s on it. The snail smiles whenever the last two
digits it has crawled over are 01. Design Moore and Mealy
FSMs of the snail’s brain.

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <47> ELSEIER

N

LOGIC DESIG|

Moore FSM

Mealy FSM

Reset

At

0/0

1/0 6 6

Mealy FSM: arcs indicate input/output

-

ENTIAL

SEQU

© Digital Design and Computer Architecture, 2™ Edition, 2012

State Transition Diagrams

Chapter 3 <48>

Moore FSM State Transition Table

“Ste
State Inputs Next State State Encoding

SO 00
S1 01
S2 10

R |k, [OlO0|0O0 |0
o |10 (k| |O |0
R O [P |O|FL,|O

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <49>

Moore FSM State Transition Table

“Ste
State Inputs Next State State Encoding

SEQUENTIAL LOGIC DESIGN

SO 00

0 0 0 0 1
0 0 1 0 0 Sl 01
0 | 1 0 0 1 g2 10
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0

S," = S,A

S, =A

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <50>

N

LOGIC DESIGI

Moore FSM Output Table

Current State Output

O|F—|O

O

ENTIAL

SEQU

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <51>

o= 2 R RS FUEm =

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

Moore FSM Output Table

Current State Output

Chapter 3 <52>

Mealy FSM State Transition & Output Table

Current Next
State Input State Output

State Encoding

SO 00
S1 01

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <53>

Current NENG

State Input State Output

R || O[O
R O[O
O, |[O|F

P [O|O | O

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

Mealy FSM State Transition & Output Table

State Encoding

SO

00

S1

01

Chapter 3 <54>

P

ELSEVIER

N

Moore FSM Schematic

LOGIC DESIG|

ENTIAL
Y

Py,
M
wn
D
—

SEQU

© Digital Design and Computer Architecture, 2™ Edition, 2012

Chapter 3 <55>

Mealy FSM Schematic

#>Q S' 'S, ?Y

TIAL LOGIC DESIGN
>

SEQUEN

A
(D
n
(D
—t

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <56>

jagram

D

iming

T
=
qe)
5
=
o
O
O
O
p=

\
\\\\\\\\ / PR
—

—

()

S
>

6
\\\\\\\\ / PR
o

—

(D)

s
>

6
\\\\\\\\ / PR
o

()

S
>

6
\\\\\\\\ / PR
o0

()

S
>

6
\\\\\\\\ / PR
N~

()

S
>

6
\\\\\\\\ / PR
©

()

S
>

6

Lo

@

[&]

>

8

<t

@

[&]

>

6

o™

@

(]

>

6

N

@

[&]

>

6

—

@

[&]

>

6

X

|

o &

@

c

— — -

NDIs3d 21901 1VILNIND3S

(ST XSz)(s0

(S0

X S2

X S1

X S2

(s1

chine

ealy Ma

M

XSO

AS1

XS0 XSt

AS1

e e

ELSEVIER

N\
N~
LN
T \
(qp]
[
(]
=
o
R ©
<
(@)
I o
i
o
o
=
O
. =
5
L
e
c
o
—_——— e’
g
3
4
(S
L
i
o <
Q
e
<
s
L
4
P
o Q
S
O
o
<
- (o]
c
D
w0
QL
Q
—
(]
i
D
Q
©

Factoring State Machines

* Break complex FSMs into smaller interacting
FSMs

 Example: Modify traffic light controller to have
Parade Mode.
— Two more inputs: P, R

— When P =1, enter Parade Mode & Bravado Blvd
light stays green

— When R =1, leave Parade Mode

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <58>

© Digital Design and Computer Architecture, 2™ Edition, 2012

< EETEL AR

O

=

)

W' uUnfactored FSM r—»

Ql R—> controller [La
‘ Ta—> FSM > L

9 = B

G’

Q S 1

=l Factored FSM N |

= iy FoM |

S | |

S R,

Mi Tﬁ:ﬁ Lights ﬂ:7L"-A

:‘ TBﬂI» FSM TL»LB

H i Colgtsrs/:ler i

) o |

Chapter 3 <59>

‘ !"in'

R

ELSEVIER

= Unfactored FSM

L LOG

v

ENTIA

SEQU

© Digital Design and Computer Architecture, 2™ Edition, 2012

Chapter 3 <60>

Factored FSM

L,: yellow
L: red

OGIC DESIGN

bt

ENTIAL L

W

M+T,
Lights FSM

SEQU

© Digital Design and Computer Architecture, 2™ Edition, 2012

Mode FSM

Chapter 3 <61>

FSM Design Procedure

Identify inputs and outputs
Sketch state transition diagram
Write state transition table
Select state encodings

For Moore machine:
1. Rewrite state transition table with state encodings
2. Write output table

6. For a Mealy machine:

1. Rewrite combined state transition and output table with state
encodings

7. Write Boolean equations for next state and output Ioglc
V¥ 8. Sketch the circuit schematic

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <62> ELSEVIER

EQUENTIAL LOGIC DESIGN

* Flip-flop samples D at clock edge
* D must be stable when sampled

« Similar to a photograph, D must be stable
around clock edge

 |f not, metastability can occur

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <63>

5 Input Timing Constraints

Wi - Setup time: tserp = time before clock edge data must be
Q stable (i.e. not changing)

E‘ - Hold time: t,,4 = time after clock edge data must be stable

o . Aperture time: t, = time around clock edge data must be
O(stable (ta = 1:setup T 1:hold)

)
Ell

' |
— CLK ,(
5 '
Wy | : ;

D XA QOOUOXX

S PR
H i 1:setup Ithold i
) < >

t

a

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <64>

Output Timing Constraints

O
-
Wi - Propagation delay: t,cq = time after clock edge that the
Q output Q Is guaranteed to be stable (i.e., to stop changing)
Ef « Contamination delay: toeq = time after clock edge that Q
O] might be unstable (i.e., start changing)
Q
~ CLK I
~ D
E Q i
| | |
2, <7 > |
Wy = | >
8 tIOCCI |
W
)

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <65> S;i

Dynamic Discipline

« Synchronous sequential circuit inputs must be
stable during aperture (setup and hold) time
around clock edge

 Specifically, inputs must be stable
— at least tyy,, before the clock edge
— at least until t, 4 after the clock edge

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <66>

Dynamic Discipline

* The delay between registers has a
minimum and maximum delay, dependent

on the delays of the circuit elements

CLK CLK
| |

alhian | ¢ Imali

a) R1 R2

< : >
)I/_

I

I

I

CLK

|
o1 |

|
D2 |
(b)

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <67>

/N

SEQUENTIAL LOGIC DESIGN

Setup Time Constraint

oy

V) . .
L« Dependson the maximum delay from register R
8[through combinational logic to R2

==. * Theinput to register R2 must be stable at least t

8 before clock edge
CLK CLK

1

setup

)
E.! Ql(¢ }DZ TC >
“':: R1 R2
2 l¢ T >l/_
= CLK
Ly | \ |
= QL | |
Q ORI o ot G
H | tpcq i tpd i tsetup |
[€< »>< >

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <68>

£ A
:\ U, ,{
“A';L‘ &>

S
o

i) 4
s \%

R AR 4
ELSEVIER

Setup Time Constraint

Ty
vy | .
L. - Depends on the maximum delay from register R1
Q through combinational logic to R2
E: * The input to register R2 must be stable at least ¢,
8 before clock edge
| CLK K
~d Qi 102
<< L ¥ J T.2 tpcq T tpd + 1:setup
“':: R1 R2 t <
2 l< \TC >|Iy_ Pd =
, CLK
Wy | |
= QL | l
| . |
H 52 | mo<><><>§>@<>e< |
w :(tpcq);(tpd)§<tsetup):

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <69>

Setup Time Constraint

V) | |
L. - Depends on the maximum delay from register R1
8[through combinational logic to R2

==. * Theinput to register R2 must be stable at least t

O before clock edge

Q:y C%K C%K

—)

Si R1 R2

b~ T,

Zf l¢ >l/_
, CLK

Wy | \ |

= QL | |

Q D2 : W@W :

W T i |

w I(pcq)i(pd)E(setup >

© Digital Design and Computer Architecture, 2™ Edition, 2012

setup

c = *pcq
tog < T — (t

T >t T tpd T 1:setup

pcy T tsetup)

(Theq + Lewp): SEQUENCingG overhead

Chapter 3 <70>

Py

IR AR A
ELSEVIER

<=8 Hold Time Constraint

hold

Ty
V) L .
L. - Depends on the minimum delay from register R1
Q through the combinational logic to R2
E: The input to register R2 must be stable for at least
O t, .. after the clock edge
9{ CLK CLK
Q1 b2
o] ¢
SI R1 - g R2 thOId =
- | |
Zf CLK | \ }I’_
o 1 | |
= =P .
S T
M[|tccq tcd |
g |t |
|

© Digital Design and Computer Architecture, 2™ Edition, 2012

Chapter 3 <71>

£ A
:\ U, ,{
“A';L‘ &>

S
o

i) 4
s \%

IR AR A
ELSEVIER

<=8 Hold Time Constraint

hold

T tcd

Ty
V) L .
L. - Depends on the minimum delay from register R1
Q through the combinational logic to R2
E: The input to register R2 must be stable for at least
O t, .. after the clock edge
9{ CLK CLK
Q1 b2
o] ¢
<f R1 \ J Ro thold < tccq
—
- | I tcd >
Zf CLK | \ }I’_
o 1 | |
= =P .
S T
M[|tccq tcd |
g |t |
|

© Digital Design and Computer Architecture, 2™ Edition, 2012

Chapter 3 <72>

£ A
:\ U, ,{
“A';L‘ &>

S
o

i) 4
s \%

IR AR A
ELSEVIER

<=8 Hold Time Constraint

hold

Ty
V) L .
L. - Depends on the minimum delay from register R1
Q through the combinational logic to R2
E: The input to register R2 must be stable for at least
O t, .. after the clock edge
9{ CLK CLK
Q1 b2
o] ¢
<f R1 \ J Ro thold < tccq T tcd
—
- | | tcd > 1:hold) tccq
Zf CLK | \ }I’_
o 1 | |
= =P .
S T
M[|tccq tcd |
g |t |
|

© Digital Design and Computer Architecture, 2™ Edition, 2012

Chapter 3 <73>

£ A
:\ U, ,{
“A';L‘ &>

S
o

i) 4
s \%

IR AR A
ELSEVIER

e

-

Timing Analysis

—

-~

CLK

_|7\|
>
\/

A
U9
—

GIC DESIGN

ck Timing Characteristics

N

_I7I_I7I

ot E ——— —

Loy =

tcd -

Setup time constraint:

SEQUENTIAL LO

© Digital Design and Computer Architecture, 2™ Edition, 2012

teeg =30ps
theg = 50 ps
toetup = 60 ps
X Y1X
L thoia = 70 PS
Yy
Q
g |: t,y =35ps
Ll t, =25ps

Hold time constraint:

tccq + tcd > thold ?

Ll
Chapter 3 <74> ELSEVIER

Timing Analysis

m CLK cik Timing Characteristics
7

Q[_r a teeg = 30 ps
o b [
m‘ tsetup =60 PS
Q‘ qle 1) XY

| _r J 11 thow =70 ps
ol

D Y' MY

e | _|V - o
q- & |:tpd =35 ps
~i (@))
”‘[o t, =25ps
2(t,q =3 X35 ps =105 ps
w.ui t.y=250ps
:(Setup time constraint: Hold time constraint:
U T.2 (50 + 105 + 60) ps = 215 ps tecg * teg ™ thotd ?
Wy f.=1/T.= 4.65 GHz (30 + 25) ps > 70 ps ? No!

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <75>

- . - m— —

W

SEQUENTIAL LOGIC DESIGN

Timing Analysis

Add buffers to the short paths:

CLK CLK

YA

|

_; C] D XYX
15 W;y

Loy =

tcd -

Setup time constraint:

© Digital Design and Computer Architecture, 2™ Edition, 2012

Chapter 3 <76>

Timing Characteristics

teeg =30ps
theg =200pS
toetup = 60 PS
thoa =70 Ps
*?!i |: t,y =35ps
Ll t, =25ps

Hold time constraint:

tccq + tcd > thold ?

OGIC DESIGN

ENTIAL L

SEQU

Timing Analysis

Add buffers to the short paths:

CLK

\

t,q =3 X35 ps =105 ps
ty=2x25ps=>50ps

Setup time constraint:

T.2 (50 + 105 + 60) ps = 215 ps
f.=1/T.=4.65 GHz

© Digital Design and Computer Architecture, 2™ Edition, 2012

(30+50) ps>70ps ? Yes!

Chapter 3 <77>

Timing Characteristics

teeg =30ps
theg =200pS
toetup = 60 PS
thoa =70 Ps
*Sg': |: t,y =35ps
Ll t, =25ps

Hold time constraint:

tccq + tcd > thold ?

Clock Skew

The clock doesn’t arrive at all registers at same time

* Skew: difference between two clock edges

* Perform worst case analysis to guarantee dynamic
discipline is not violated for any register — many

registers in a system!
delay CLK

ENTIAL LOGIC DESIGN

8 CLK1 H/
= csef
W oLk [77f

Pe S
© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <78> ELS

EVIER

Setup Time Constraint with Skew

gl * In the worst case, CLK2 is earlier than CLK1

U CLK1 CLK2
A S i
(

o R1 - R2
~I p ° >

CLKlﬂﬂkl AN ﬁ?’ T >

Q1

|
|
| R
D21 (0000000000
; o

> <>

pd setup “skew

TIAL

EN

—_—

t

SEQU
Y

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <79>

GN

—

DESI

GIC

—_—

ENTIAL LO

SEQU

Setup Time Constraint with Skew

* |In the worst case, CLK2 is earlier than CLK1

CHKl CHKZ
QL[D2
LY
R1 T R2
l¢ ¢ »l

Q1

|
|
. L
D2 | (000000000 |
| o
<t>:<t > <>

pcq pd tsetup tskew

CLKL1///J~ N\ i

© Digital Design and Computer Architecture, 2™ Edition, 2012

To> g+ Loy +
g <

setup

+1

skew

Chapter 3 <80>

S :
&3
4
o) 4
. \);n'

IR AR A
ELSEVIER

GN

—

DESI

GIC

—_—

ENTIAL LO

SEQU

Setup Time Constraint with Skew

* |In the worst case, CLK2 is earlier than CLK1

Cl_lKl CI_|K2
Qi D2,
L @) 7
R1 T R2
l < pl
CLK1 A\ /)Y
I o
Q1 T
. L]
D2 | 000000
| I
<« >« > PP
tqu tIOd ~ 'setup ‘skew

© Digital Design and Computer Architecture, 2™ Edition, 2012

Tc = 1:pcq t 1:pd t tsetup t tskew
1:pd = Tc o (tpcq T tsetup t tskew)

Chapter 3 <81>

S :
&3
4
o) 4
. \);n'

IR AR A
ELSEVIER

Hold Time Constraint with Skew

* In the worst case, CLK2 is later than CLK1

CLK1 CLK2
| |

= —

R1 R2

|
CLK1Q{YI AL [/
CLK2///f N\ /)Y tCCq
|

cd

TIAL LOGIC DESIGN

I
> QL MOUAX |
L I 1
Ly D2 | QOOOIARAX
:‘ tccq : tcd
Q |
H tske\lv thold

A o ey
:-13 3
bl)
it
3 T
)

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <82> S;:

LOGIC DESIGN

I
CLKleI ARRNN s

Hold Time Constraint with Skew

In the worst case, CLK2 is later than CLK1

CLK1 CLK2
| |

R1 R2

o]
vy Wﬂff eag * Ted > Thota * Lskew
E' Q1 XPOONK | tcd >

‘ | .

L D21 XXOGOXXKRRRX
§ tCCq: tcd

I

H tske:v thold

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <83>

Hold Time Constraint with Skew

* In the worst case, CLK2 is later than CLK1

CLK1 CLK2
| |

R1 R2

I
CLKleI ARRNN s

LOGIC DESIGN

o]

<(CLK2///f T\ /77}' tccq + tcd > 1:hold T tskew

~ ' | >t o+t — t

E' QL OO | th hold © ‘skew — ‘ccq
¢ | .

L b2 | X OO

:‘ tCCq: tcd

Q |

H tske\lv thold

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <84>

Violating the Dynamic Discipline

L.« Asynchronous (for example, user)
. . . - t t
* inputs might violate the dynamic ;="

Ef discipline kK

: : !

| CLK <«

) —Q ° g
. Q |

3

21 D /=

Wy o ’ 8

=

Q D /T =

Ly 5 277 §

17,1

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <85>

SIGN

OGIC DE.

SEQUENTIAL L

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <86>

Metastability

« Bistable devices: two stable states, and a metastable
state between them

* Flip-flop: two stable states (1 and 0) and one
metastable state

o |If flip-flop lands in metastable state, could stay there
for an undetermined amount of time

metastable

stable stable

@ @

Flip-Flop Internals

 Flip-flop has feedback: if Q is somewhere between
1 and 0O, cross-coupled gates drive output to either

rail (1 or 0) R m. o
s N9

« Metastable signal: if it hasn’t resolved to 1 or 0

« If flip-flop input changes at random time, probability
that output Q Is metastable after waiting some time, t:
P(tes > 1) = (T/T;)

t.. : timetoresolvetolorO
Ty, T: properties of the circuit

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <87>

GN

Metastability

A

Wi . Intuitively:

Q‘- T,/T.: probability input changes at a bad time (during aperture)
Ei I:)(tres > t) = (TO/ Tc) et

O

O» T: time constant for how fast flip-flop moves away from

] metastability

E! I:)(tres > t) = (T0/ Tc) eVt

m::

2; In short, Iif flip-flop samples metastable input, if you wait
g long enough (t), the output will have resolved to 1 or 0
D with high probability.

Wy

o'

Sy y
&3
$) al
o * \y
&

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <88> ELSEVIER

E Synchronizers
-
V) | . .
L.« Asynchronous inputs are inevitable (user interfaces,
Q systems with different clocks interacting, etc.)
E « Synchronizer goal: make the probability of failure (the
G output Q still being metastable) low
9‘ « Synchronizer cannot make the probability of failure O
)
L CLK
= \
'~ n
o
Ly
)

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <89>

Synchronizer Internals

 Synchronizer: built with two back-to-back flip-flops
 Suppose D is transitioning when sampled by F1
» Internal signal D2 has (T; - t,,) time to resolve to 1

GIC DESIGN

| or O CLK CLK
9’ D m b2 m Q
- | F1 F2

: : T, :
3 ﬂ ~
L CLK I \ I
ZQ ! , I
Wy 5 I\ / |
D, : / metastable \ ﬂi\ :
o o | i
% < e«

t 't t

res setup pcqI
© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <90>

Synchronizer Probability of Failure

Ly For each sample, probability of failure is:
| P(failure) = (T,/T,) e (Te- tawlie

G‘ CLK CLK
0 5 D2 o
=l F1 F2
—) - T, -
qf < >
oy I |
= _/\ _ /
ME D2 : metastable i/ :
= | /.
o o S
Wy | ' =

| : |
% T e

res setup pcq

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <91>

Synchronizer Mean Time Between Failures

« |f asynchronous input changes once per second,
probability of failure per second is P(failure).

 |f input changes N times per second, probability of failure
per second Is:

P(failure)/second = (NT,/T,) e(Te- Lewl/

 Synchronizer fails, on average, 1/[P(failure)/second]
 Called mean time between failures, MTBF:

MTBF = 1/[P(failure)/second] = (TJ/NT,) e(Te- tew)/

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <92>

Example Synchronizer

N =10 events per second
« What is the probability of failure? MTBF?

- - . - — —

TIAL LOGIC DESIGN

EN

SEQU

© Digital Design and Computer Architecture, 2™ Edition, 2012

CLK CLK
| |
D D2 0
F1 F2
e Suppose: T. =1/500MHz=2ns t =200ps
Ty =150ps Lerp = 100 ps

Chapter 3 <93>

‘ \an'

IR AR A
ELSEVIER

et

GN

Example Synchronizer

A

m CLK CLK

Q[D D2 0
@ F1 F2

oy

m" e Suppose: T. =1/500MHz=2ns t =200ps
Q‘ Ty =150ps Lerp = 100 ps

N =10 events per second
« What is the probability of failure? MTBF?

— — —_—

v

=5.6 x 106

ENTIAL L

SEQU

© Digital Design and Computer Architecture, 2™ Edition, 2012

P(failure) = (150 ps/2 ns) e-(19 s)/200 ps

P(failure)/second = 10 x (5.6 x 10%)
=5.6 x 10~/ second
MTBF = 1/[P(failure)/second] = 5 hours

Chapter 3 <94>

' lan'

IR AR A
ELSEVIER

<8 Parallelism

G

E;

A~ * Two types of parallelism:

Ef — Spatial parallelism

G » duplicate hardware performs multiple tasks at once
9{ — Temporal parallelism

! » task Is broken into multiple stages
Sz » also called pipelining

FE » for example, an assembly line

g[

o

)

P

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <95> 5;;

Parallelism Definitions

» Token: Group of Iinputs processed to produce
group of outputs

 Latency: Time for one token to pass from
start to end

» Throughput: Number of tokens produced
per unit time

Parallelism increases throughput

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <96>

== Parallelism Example

O

Ty

e

W'Q"'[« Ben Bitdiddle bakes cookies to celebrate traffic light
“F controller installation

=« 5minutes to roll cookies

8 15 minutes to bake
=d ¢ What is the latency and throughput without parallelism?

v

ENTIA

—re

SEQU

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <97>

Parallelism Example

« Ben Bitdiddle bakes cookies to celebrate traffic light
controller installation

5 minutes to roll cookies
e 15 minutes to bake
What is the latency and throughput without parallelism?

Latency =5 + 15 = 20 minutes = 1/3 hour
Throughput = 1 tray/ 1/3 hour = 3 trays/hour

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <98> S;:

Parallelism Example

« What is the latency and throughput if Ben
uses parallelism?

— Spatial parallelism: Ben asks Allysa P. Hacker to
help, using her own oven

— Temporal parallelism:
* two stages: rolling and baking
* He uses two trays

« While first batch is baking, he rolls the
second batch, etc.

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <99>

Spatial Parallelism

Latency:
time to
first tray

>
O
W
W
Ql 0 5 10 15 20 25
&7
o
G
Q

Tray 1
e
<. 2 Tray2 Alyssa 1
g2
%) £ Tray3
| o
] Tray 4 Alyssa 2
o] \
E:
> Latency = ?
W

Throughput = ?

SEQU

© Digital Design and Computer Architecture, 2™ Edition, 2012

Chapter 3 <100>

Time

Roll

Legend

TIAL LOGIC DESIGN

Spatial Parallelism

Tray 1
c;csé Tray 2 Alyssa 1
(%c:% Tray 3
l * Tray 4 Alyssa 2
!
> Latency =5 + 15 = 20 minutes = 1/3 hour
g: Throughput = 2 trays/ 1/3 hour = 6 trays/hour
W
)
© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <101>

Latency:
time to
first tray
0 5 10 15 20 25 30 35 40 45 50
|]]]]]]]]]] .
Time

‘ \an'

ELSEVIER

Latency:
time to
first tray

Temporal Parallelism

—
)
<
[ERN

Tray 2

Temporal
Parallelism

—
)

<
w

-«

Latency = ?
Throughput = ?

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

Chapter 3 <102>

ENTIAL LOGIC DESIGN

SEQUEN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <103> S;:

Temporal Parallelism

Temporal
Parallelism

Latency:
time to
first tray

0 5 10 15 20 25 30 35 40 45 50

Latency =5 + 15 = 20 minutes = 1/3 hour
Throughput = 1 trays/ 1/4 hour = 4 trays/hour

Using both techniques, the throughput would be 8 trays/hour

e)
S 3
;_:.15.{:‘(
S C z‘
D * \y
el

