Chapter 4

Digital Design and Computer ArchitecturdRM® Edition
Sarah L. Harris and David Money Harris

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 &>

Chapter 4 :: Topics

Application |>"hello
Software |world!”

Operating
Systems

_ N
Architecture = —

A Introduction
A Combinational Logic
A Structural Modeling E_]

A Sequential Logic
A More Combinational Logic -
A Finite State Machines

Circuits

_ Lo
A Parameterized Modules S
A Testbenches - S

Introduction

A Hardware description language (HDL):
I specifies logic function only
I Computeraided design O1CAD) tool produces or
synthesizefhe optimized gates
A Most commercial designs built using HDLs

A Two leading HDLs:

I sttemVeriIog
developed in 1984 by Gateway Design Automation
A |EEE standard (1364) in 1995
A Extended in 2005 (IEEE STD 13009)

I VHDL 2008
A Developed in 1981 by the Department of Defense
A|EEE standard (1076) in 1987
A Updated in 2008 (IEEE STD 1Q068)

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 3>

SystemVerilog

Verilog was developed by Gateway Design Automation as a
proprietary language for logic simulation in 1984. Gateway
was acquired by Cadence in 1989 and Verilog was made an
open standard in 1990 under the control of Open Verilog
International. The language became an IEEE standard' in
1995. The language was extended in 2005 to streamline idio-
syncrasies and to better support modeling and verification of
systems. These extensions have been merged into a single lan-
guage standard, which is now called SystemVerilog (IEEE STD
1800-2009). SystemVerilog file names normally end in . sv.

VHDL
VHDL is an acronym for the VHSIC Hardware Description

Language. VHSIC is in turn an acronym for the Very High Speed
Integrated Circuits program of the US Department of Defense.

VHDL was originally developed in 1981 by the Department
of Defense to describe the structure and function of hardware. Its
roots draw from the Ada programming language. The language
was first envisioned for documentation but was quickly adopted
for simulation and synthesis. The IEEE standardized it in 1987
and has updated the standard several times since. This chapter
is based on the 2008 revision of the VHDL standard (IEEE
STD 1076-2008), which streamlines the language in a variety
of ways. At the time of this writing, not all of the VHDL 2008
features are supported by CAD tools; this chapter only uses
those understood by Synplicity, Altera Quartus, and ModelSim.
VHDL file names normally end in . vhd.

To use VHDL 2008 in ModelSim, you may need to set
VHDL93 =2008 in the modelsim.ini configuration file.

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 4>

ELSEVIER

HDL to Gates

w Simulation

¢ Inputs applied to circuit
¢ Outputs checked for correctness

¢ Millions of dollars saved by debugging in simulation instead of

hardware

¢ Example: correcting a mistake in a cuttedge integrated circuit costs more than a million dollars
G154 aSOSNYIt Y2yidKao LyiStQa AYyTFlFYz2dza C5L
forced the company to recall chips after they had shipped, at a total cost of $475 million.

¢ Logic simulation is essential to test a system before it is built.

wSynthesis

¢ Transforms HDL code intaatlistdescribing the hardware (i.e., &
list of gates and the wires connecting them)

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 §>

HDL to Gates

wSimulation
¢ Inputs applied to circuit
¢ Outputs checked for correctness

¢ Millions of dollars saved by debugging in simulation
Instead of hardware

wSynthesis

¢ Transforms HDL code intnatlistdescribing the hardware
(.e., a list of gates and the wires connecting them)

IMPORTANTWhen using an HDL, think of thardwarethe HDL
should produce

HDL

A In our experience, the best way kearn an HDL is by example
HDLs have specific ways of describing various classes of logic;
these ways are calledioms.

A This chapter will teach you how to write the progéDL idionsfor
each type of block and then how to put the blocks together to
produce a working system.

A When you need to describe a particular kind of hardwérek for
a similar exampland adapt it to your purpose.

A We do not attempt to rigorously define all the syntax of the HDLs
because that is deathly boring and because it tends to encourag
thinking of HDLs as programming languages shotthand for
hardware

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 £>

SystemVerilod/lodules

a— .
h__ Verilog | y
c_ Module

Two types of Modules:

¢ Behavioral:describe what a module does

¢ Structural:describe how it is built from simpler
modules

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 8>

BehavioralGystemVerilog

SystemVerilog

module example(input logic a, b, c,
output logic y);
assigny=~a&~-b&-~c|la&-~-b&~cl|a&~b& c;
endmodule

BehavioralGystemVerilog

SystemVerilog

module example(input logic a, b, c,
output logic y);
assigny=~a&~-b&-~c|la&-~-b&~cl|a&~b& c;
endmodule

A module/ endmodule : required to begin/end module
A example : name of the module
A Operators:

~. NOT

& AND

| - OR

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 £0>

SystemVerilog

module sillyfunction(input Togica, b, c,
output logicy):

assigny=~a & ~b & ~c |
ad~bh~c |
abh~bh c:

endmodule

A SystemVerilog module begins with the module name and a
listing of the inputs and outputs. The assign statement
describes combinational logic. ~ indicates NOT, & indicates
AND, and | indicates OR.

logic signals such as the inputs and outputs are Boolean
variables (0 or 1). They may also have floating and undefined
values, as discussed in Section 4.2.8.

The Tlogic type was introduced in SystemVerilog. It
supersedes the reg type, which was a perennial source of con-
fusion in Verilog. Togic should be used everywhere except on
signals with multiple drivers. Signals with multiple drivers are
called nets and will be explained in Section 4.7.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.a11;

entity sillyfunction is
port{a, b, c: in STO_LOGIC;
y: out STD_LOGIC):
end;

architecture synthof sillyfunctionis
begin
¥y <= (not a and not b and not ¢) or
(& and not b and not ¢) or
(a and not b and ¢);
end;

VHDL code has three parts: the Tibrary use clause, the
entity declaration, and the architecture body. The 1ibrary
use clause will be discussed in Section 4.7.2. The entity
declaration lists the module name and its inputs and outputs.
The architecture body defines what the module does.

VHDL signals, such as inputs and outputs, must have a
type declaration. Digital signals should be declared to be
STD_LOGIC type. STD_LOGIC signals can have a value of '0'
or '1', as well as floating and undefined values that will be
described in Section 4.2.8. The STD_LOGIC type is defined in
the TEEE.STD_LOGIC_1164 library, which is why the library
must be used.

VHDL lacks a good default order of operations between
AND and OR, so Boolean equations should be parenthesized.

HDL Simulation

SystemVerilog

module example(input logic a, b, c,
output logic y);
assigny=~a&~-b&-~c|la&-~-b&~cl|a&~b& c;
endmodule

Now:
800 ns Ons 160 320ns 480 640ns 800

M a
M b

o o o O

HDL Synthesis

SystemVerilog
module example(input logic a, b, c,
output logic y);
assigny=~a&~-b&-~c|la&-~-b&~cl|a&~b& c;
endmodule

Synthesis:

SystemVerilogyntax

A Case sensitive
I Examplereset andReset are not the same signal.

A No names that start with numbers
I Example2muxis an invalid name

A Whitespace ignored
A Comments:

I // single line comment
T /* multiline
comment */

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 £4>

Structural Modeling Hierarchy

module and3(input logic a, b, c,
output logic y);
assigny=a &b &c;
endmodule

module inv (input logic a,
output logic y);
assigny = ~a;
endmodule

module nand3(input logic a, b,
output logic y);

logic n1; // internal signal

and3 andgate (a, b, c, nl); // instance of and3

inv inverter(nl, y); I/ instance of inv
endmodule

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 £5>

Bitwise Operators

Bitwise operators act on single-bit signals or on multi-bit busses.

module gates(input logic [3:0] a, b,
output logic [3:0] y1, y2, y3, y4, y5);

[* Five different two - input logic
gates acting on 4 bit busses */ . »
assignyl=a&hb; //AND - is’[m o
assigny2=al|b; //OR
1 = N Db 3:0) | [rz:01
aSS|gn y3 =a b, // XOR Iz{gg% {3:01 o D [3:0] [30] cham] BT
assign y4 = ~(a & b), /I NAND yi[3:0] y4[30]
assign y5 = ~(a | b); // NOR S
endmodule Sy > ee oo pagm
y2[3:0] y5[3:0]
S
// single line comment

/[* & * multiline comment

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 £6>

SystemVerilog

SystemVerilog comments are just like those in C or Java. Com-
ments beginning with /* continue, possibly across multiple
lines, to the next */. Comments beginning with // continue
to the end of the line,

SystemVerilog is case-sensitive, y1 and V1 are different
signals in SystemVerilog. However, it is confusing to us¢ mul-
tiple signals that differ only in case.

VHDL

Comments beginning with /* continue, possibly across multiple
lines, to the next */. Comments beginning with -- continue to
the end of the line.

VHDL is not case-sensitive, y1 and Y1 are the same signal
in VHDL. However, other tools that may read your file might
be case sensitive, leading to nasty bugs if you blithely mix
upper and lower case.

SystemVerilog

Lad
=

module gates{input logic [
output logic [

Lad
==
¥

[* five different two-input logic
gates acting on 4-bit busses */

assignyl=a & b; [/ AND
assignyZz=a | b; ffOR
a55ign y3=a * b; ff XOR
assignyd=~{(a & b): // NAND
assign yb=~{(a | b);: // NOR

endmodule

~, *, and | are examples of SystemVerilog operators, whereas
a, b, and y1 are operands. A combination of operators and
operands, such as a & b, or ~(a | b), is called an expression.
A complete command such as assign y4=~(a & b); is called
a statement.

assign out=1nl op in2; is called a continuous assign-
ment statement. Continuous assignment statements end with
a semicolon. Anytime the inputs on the right side of the =in
a continuous assignment statement change, the output on the
left side is recomputed. Thus, continuous assignment state-
ments describe combinational logic.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.a11;

entity gates is
port{a, b: in STD_LOGIC_VECTOR{3 downto 0);
vl,y2, ¥3, yd,
y5: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of gates is

begin
fivedifferent two-input Togic gates
acting on 4-bit busses

¥l <=a and b;

yZ2<=aor b;

¥3 <{=a xor b;

vd <=a nand b;

¥y <=a nor b;
end;

not, xor, and or are examples of VHDL operators, whereas a,
b, and y1 are operands. A combination of operators and oper-
ands, such as a and b, or a nor b, is called an expression.
A complete command such as y4 <= a nand b; is called a
statement.

out <= inl op in2; is called a concurrent signal assign-
ment statement. VHDL assignment statements end with a
semicolon. Anytime the inputs on the right side of the <= in
a concurrent signal assignment statement change, the output
on the left side is recomputed. Thus, concurrent signal assign-
ment statements describe combinational logic.

ELSEVIER

System‘h'erilng
module inv{input logic [3:0] a,
output logic [3:0] ¥):
assigny=-~a;
endmodule

a[3:0] represents a 4-bit bus. The bits, from most significant
to least significant, are a[3], a[2], a[1], and a[0]. This is
called little-endian order, because the least significant bit has
the smallest bit number. We could have named the bus
a[4:17, in which case a[4] would have been the most signifi-
cant. Or we could have used a[0:3], in which case the bits,
from most significant to least significant, would be a[0],
al[11, a[2], and a[3]. This is called big-endian order.

a[3-0] 130]

VHDL

library IEEE: use IEEE.STD_LOGIC_1164.al1;

entity invis
port{a: in STOD_LOGIC_VECTOR(3 downto 0);
y: out STD_LOGIC_VECTOR(3 downto Q));

Lad

end:

architecture synthof inv is

begin

¥y <=not a;

end;

VHDL wuses STD_LOGIC_VECTOR to indicate busses of

STD_LOGIC. STD_LOGIC_VECTOR(3 downto 0) represents a 4-bit
bus. The bits, from most significant to least significant, are a(3),
a(2), all), and a(0). This is called little-endian order, because
the least significant bit has the smallest bit number. We could have
declared the bus to be STD_LOGIC_VECTOR(4 downto 1), in which
case bit 4 would have been the most significant. Or we could have
written STD_LOGIC_VECTOR(0 to 3), in which case the bits, from
most significant to least significant, would be a(0), a(1), a(2),
and a(3). This is called big-endian order.

3.0
= y[3:0]

y[3:0]

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 £9>

ELSEVIER

Reduction Operators

Reduction operators imply a multiplaput gate acting on a single bus.

module and8(input logic [7:0] a,
output logic Y);
assign y = &a,;
/[&a is much easier to write than
/l assigny = a[7] & a[6] & a[5] & a[4] &

I a[3] & a[2] & a[1] & a[0];
endmodule
19
1)
(2]
NI —
4] =
(5] —
[6
a[7:0] = oA
y

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 20>

HODL Example 4.4 EIGHI-INPUT AND

SystemVerilog

module and8(input Tlogic [7:0] a,
output Togic yl;

assign y=4&a;

{/ &a is much easier towrite than

{lassiany=al7] & al6] &alb] & ald] &

/1l al3] &al2] hal[l]lhal0];
endmodule

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 21>

VHDL

Iibrary TEEE; use IEEE,STD_LOGIC_1164.all;

entity and8 is

port(a: in STD_LOGIC_VECTOR(7 downto 0);

y: out STD_LOGIC):
end:

architecture synth of and8g is
begin
y <= and a;
and a is much easier towrite than
y <= a(7) and a(6) and a(5) and a(4) and
a(3) and a(2) and a(1) and a(0);
end;

ELSEVIER

Conditional Assignment

Conditional assignmentelect the output from among alternatives based on an input calle
the condition.

module mux2(input logic [3:0] dO, d1,
input logic S,
output logic [3:0]y);
assigny =s ?dl: do;
endmodule

? IS also called a ternary operator because it
operates on 3 inputs: s, d1, and dO.

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 22>

SystemVerilog

The conditional operator 7: chooses, based on a first expres-
sion, between a second and third expression. The first expres-
sion is called the condition. If the condition is 1, the operator
chooses the second expression. If the condition is 0, the opera-
tor chooses the third expression.

7: is especially useful for describing a multplexer
because, based on the first input, it selects between two others.
The following code demonstrates the idiom for a 2:1 multi-
plexer with 4-bit inputs and outputs using the conditional
operator.

module mux2(input Tlogic [3:0]d0, d1,
input logic 5,
output Togic [3:0]y);

assigny=s ?7dl : d0;

endmodule

If sis 1, then y=d1.If s is 0, then y =d0.

?: is also called a ternary operator, because it takes three
inputs. It is used for the same purpose in the C and Java pro-
gramming languages.

VHDL

Conditional signal assignments perform different operations
depending on some condition. They are especially useful for
describing a multiplexer. For example, a 2:1 multiplexer can
use conditional signal assignment to select one of two 4-bit
mnputs.

library IEEE; use IEEE.STD_LOGIC_1164.al1;

entity mux2 is
port(d0, dl: in STD_LOGIC_VECTOR(3 downto 0);
5: in STD_LOGIC:
v out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of mux2 is
begin

y <=dl when s else d0;
end;

The conditional signal assignment sets y to d1 if s is 1. Other-
wise it sets y to d0. Note that prior to the 2008 revision of
VHDL, one had to write when s="'1" rather than when s.

y[3:0]

ELSEVIER

HDL Example 4.6 4:1 MULTIPLEXER

SystemVerilog

A 4:1 multiplexer can select one of four inputs using nested
conditional operators.

module mux4(input ogic [3:0] d0, d1, d2, d3,
input logic [1:0] s,
output Togic [3:0] ¥);

O
C

O
C

assigny=s[1] ? (s[0] ?d3 : d2)
: (s[0] ?dl : dO);
endmodule

If s(1]is 1, then the multiplexer chooses the first expression,
(s[0] ? d3 : d2). This expression in turn chooses either d3
or d2 based on s[0] (y=d3 if s[0] is 1 and d2 if s[0] is 0).
If s(1] is O, then the multiplexer similarly chooses the second
expression, which gives either d1 or d0 based on s[0].

VHDL

A 4:1 multiplexer can select one of four inputs using multiple
else clauses in the conditional signal assignment.

library IEEE; use IEEE.STD_LOGIC_1164.al1;
entity muxd is
port(d0, di,

d2, d3: in STD_LOGIC_VECTOR(3 downto 0) :
%3 in STD_LOGIC_VECTOR(1 downto 0):
y: out STD_LOGIC_VECTOR(3 downto 0));

end:

architecture synthl of mux4 is
begin
y <= d0 when s="00"
dl when s ="01" ¢
d2 when s ="10" ¢
d3:

M
" »n n
M M

end:

VHDL also supports selected signal assignment statements to
provide a shorthand when selecting from one of several possi-
bilities. This is analogous to using a switch/case statement in
place of multiple if/else statements in some programming
languages. The 4:1 multiplexer can be rewritten with selected
signal assignment as follows:

architecture synth? of mux4 is
begin
with s select y <=
d0 when "00",
dl when "01",
d2 when "10",
d3 when others;
end:

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 24>

ELSEVIER

[0]
uni s 2
| d3[3:0]
[3:0] 3\
[1] ﬁ\
Oy) 30 |©
v
uni s 3 .
dE0] F;E]— d Figure 4.7 mux4 synthesized
d2[3:0] PP circuit
d0[3:0] B4
0] y[3:0]
] —
uni_s 4
[0]

uni_s 5

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 25>

ELSEVIER

Internal Variables

S=A®B®C,

module fulladder (input logic a, b, cin ,
Cnut = AB+ Acin + Bcin

output logic s, cout);
logic p, g; //internal nodes

intermediate signals, P and G,

P=A®B
G =AB
assignp=a " b; ite the full adder as follows:
assigng=a & b; S=P®C,
Coe=G+PC,,
assigns=p" cin ;
assign cout =g|(p & cin);)) o
endmodule g S

cin

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 26>

HDL Example 4.7 FULL ADDER

SystemVerilog

[n SystemVerilog, internal signals are usually declared as

logic.

module fulladder(input Tlogica, b, cin,

output Togic s, cout);
logicp, 9;

assignp=a* b;
assigng=a & b;

assigns=p* cin;
assigncout=q | (p&cin);
endmodule

VHDL

In VHDL, signals are used to represent internal variables
whose values are defined by concurrent signal assignment
statements such as p <= a xor b;

library TEEE; use TEEE.5TD_LOGIC_1164.a11;

entity fulladder is
port(a, b, cin: in STD_LOGIC;
s, cout: out STD_LOGIC):
end;

architecture synth of fulladder is
signal p, g: STO_LOGIC;

hegin
D<=4 xorb;
gé<=dand b;

s {=pxorcin;
cout <=gor (pand cin);
end,

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 27>

ELSEVIER

Precedence

Highest ~ NOT
* 1, % mult, div, mod
+, - add,sub
<<, >> shift
<<<, >>> arithmetic shift
<, <=, > >= comparison

==, I= equal, not equal

&, ~& AND, NAND

N, =N XOR, XNOR

|, ~| OR, NOR
Lowest [?: ternary operator

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 28>

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 4 29>

ELSEVIER

