
Chapter 4 <1> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4

Digital Design and Computer Architecture: ARM® Edition

Sarah L. Harris and David Money Harris

Chapter 4 <2> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 :: Topics

ÅIntroduction

ÅCombinational Logic

ÅStructural Modeling

ÅSequential Logic

ÅMore Combinational Logic

ÅFinite State Machines

ÅParameterized Modules

ÅTestbenches

Chapter 4 <3> Digital Design and Computer Architecture: ARM® Edition © 2015

ÅHardware description language (HDL):
ïspecifies logic function only
ïComputer-aided design (CAD) tool produces or

synthesizes the optimized gates

ÅMost commercial designs built using HDLs
ÅTwo leading HDLs:
ïSystemVerilog
Ådeveloped in 1984 by Gateway Design Automation
ÅIEEE standard (1364) in 1995
ÅExtended in 2005 (IEEE STD 1800-2009)

ïVHDL 2008
ÅDeveloped in 1981 by the Department of Defense
ÅIEEE standard (1076) in 1987
ÅUpdated in 2008 (IEEE STD 1076-2008)

Introduction

Chapter 4 <4> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <5> Digital Design and Computer Architecture: ARM® Edition © 2015

ωSimulation
ςInputs applied to circuit

ςOutputs checked for correctness

ςMillions of dollars saved by debugging in simulation instead of
hardware

ς Example: correcting a mistake in a cutting-edge integrated circuit costs more than a million dollars and
ǘŀƪŜǎ ǎŜǾŜǊŀƭ ƳƻƴǘƘǎΦ LƴǘŜƭΩǎ ƛƴŦŀƳƻǳǎ C5L± όŦƭƻŀǘƛƴƎ Ǉƻƛƴǘ ŘƛǾƛǎƛƻƴύ ōǳƎ ƛƴ ǘƘŜ tŜƴǘƛǳƳ ǇǊƻŎŜǎǎƻǊ
forced the company to recall chips after they had shipped, at a total cost of $475 million.

ςLogic simulation is essential to test a system before it is built.

ωSynthesis
ςTransforms HDL code into a netlistdescribing the hardware (i.e., a

list of gates and the wires connecting them)

HDL to Gates

Chapter 4 <6> Digital Design and Computer Architecture: ARM® Edition © 2015

ωSimulation
ςInputs applied to circuit

ςOutputs checked for correctness

ςMillions of dollars saved by debugging in simulation
instead of hardware

ωSynthesis
ςTransforms HDL code into a netlistdescribing the hardware

(i.e., a list of gates and the wires connecting them)

IMPORTANT: When using an HDL, think of the hardwarethe HDL
should produce

HDL to Gates

Chapter 4 <7> Digital Design and Computer Architecture: ARM® Edition © 2015

ÅIn our experience, the best way to learn an HDL is by example.
HDLs have specific ways of describing various classes of logic;
these ways are called idioms.
ÅThis chapter will teach you how to write the proper HDL idiomsfor

each type of block and then how to put the blocks together to
produce a working system.
ÅWhen you need to describe a particular kind of hardware, look for

a similar exampleand adapt it to your purpose.
ÅWe do not attempt to rigorously define all the syntax of the HDLs,

because that is deathly boring and because it tends to encourage
thinking of HDLs as programming languages, not shorthand for
hardware.

HDL

Chapter 4 <8> Digital Design and Computer Architecture: ARM® Edition © 2015

a
b y
c

Verilog

Module

Two types of Modules:
ςBehavioral:describe what a module does

ςStructural:describe how it is built from simpler
modules

SystemVerilogModules

Chapter 4 <9> Digital Design and Computer Architecture: ARM® Edition © 2015

module example(input logic a, b, c,

output logic y);

assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b & c;

endmodule

SystemVerilog:

Behavioral SystemVerilog

Chapter 4 <10> Digital Design and Computer Architecture: ARM® Edition © 2015

module example(input logic a, b, c,

output logic y);

assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b & c;

endmodule

SystemVerilog:

Behavioral SystemVerilog

Åmodule/ endmodule : required to begin/end module
Å example : name of the module

ÅOperators:
~: NOT
&: AND
| : OR

Chapter 4 <11> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <12> Digital Design and Computer Architecture: ARM® Edition © 2015

HDL Simulation

module example(input logic a, b, c,

output logic y);

assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b & c;

endmodule

SystemVerilog:

Chapter 4 <13> Digital Design and Computer Architecture: ARM® Edition © 2015

un5_y

un8_y

y

yc

b

a

HDL Synthesis

module example(input logic a, b, c,

output logic y);

assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b & c;

endmodule

SystemVerilog:

Synthesis:

Chapter 4 <14> Digital Design and Computer Architecture: ARM® Edition © 2015

ÅCase sensitive
ïExample:reset and Reset are not the same signal.

ÅNo names that start with numbers
ïExample: 2mux is an invalid name

ÅWhitespace ignored

ÅComments:
ï // single line comment

ï /* multiline

comment */

SystemVerilogSyntax

Chapter 4 <15> Digital Design and Computer Architecture: ARM® Edition © 2015

module and3(input logic a, b, c,

output logic y);

assign y = a & b & c;

endmodule

module inv (input logic a,

output logic y);

assign y = ~a;

endmodule

module nand3(input logic a, b, c

output logic y);

logic n1; // internal signal

and3 andgate (a, b, c, n1); // instance of and3

inv inverter(n1, y); // instance of inv

endmodule

Structural Modeling - Hierarchy

Chapter 4 <16> Digital Design and Computer Architecture: ARM® Edition © 2015

module gates(input logic [3:0] a, b,

output logic [3:0] y1, y2, y3, y4, y5);

/* Five different two - input logic

gates acting on 4 bit busses */

assign y1 = a & b; // AND

assign y2 = a | b; // OR

assign y3 = a ^ b; // XOR

assign y4 = ~(a & b); // NAND

assign y5 = ~(a | b); // NOR

endmodule

// single line comment

/*é*/multiline comment

Bitwise Operators

Chapter 4 <17> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <18> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <19> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <20> Digital Design and Computer Architecture: ARM® Edition © 2015

module and8(input logic [7:0] a,

output logic y);

assign y = &a;

// &a is much easier to write than

// assign y = a[7] & a[6] & a[5] & a[4] &

// a[3] & a[2] & a[1] & a[0];

endmodule

Reduction Operators
Reduction operators imply a multiple-input gate acting on a single bus.

Chapter 4 <21> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <22> Digital Design and Computer Architecture: ARM® Edition © 2015

module mux2(input logic [3:0] d0, d1,

input logic s,

output logic [3:0] y);

assign y = s ? d1 : d0;

endmodule

? : is also called a ternary operator because it

operates on 3 inputs: s , d1 , and d0 .

Conditional Assignment
Conditional assignments select the output from among alternatives based on an input called
the condition.

Chapter 4 <23> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <24> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <25> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <26> Digital Design and Computer Architecture: ARM® Edition © 2015

module fulladder (input logic a, b, cin ,

output logic s, cout);

logic p, g; // internal nodes

assign p = a ^ b;

assign g = a & b;

assign s = p ^ cin ;

assign cout = g | (p & cin);

endmodule

p

g s

un1_cout cout

cout

s

cin

b

a

Internal Variables

Chapter 4 <27> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <28> Digital Design and Computer Architecture: ARM® Edition © 2015

~ NOT

*, /, % mult, div, mod

+, - add,sub

<<, >> shift

<<<, >>> arithmetic shift

<, <=, >, >= comparison

==, != equal, not equal

&, ~& AND, NAND

^, ~^ XOR, XNOR

|, ~| OR, NOR

?: ternary operator

Highest

Lowest

Precedence

Chapter 4 <29> Digital Design and Computer Architecture: ARM® Edition © 2015

