
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
1

Chapter 16 Developing Efficient

Algorithms

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
2

Objectives
To estimate algorithm efficiency using the Big O notation (§16.2).

To explain growth rates and why constants and nondominating terms can

be ignored in the estimation (§16.2).

To determine the complexity of various types of algorithms (§16.3).

To analyze the binary search algorithm (§16.4.1).

To analyze the selection sort algorithm (§16.4.2).

To analyze the insertion sort algorithm (§16.4.3).

To analyze the Towers of Hanoi algorithm (§16.4.4).

To describe common growth functions (constant, logarithmic, log-linear,

quadratic, cubic, exponential) (§16.4.5).

To design efficient algorithms for finding Fibonacci numbers (§16.5).

To design efficient algorithms for finding gcd (§16.6).

To design efficient algorithms for finding prime numbers (§16.7).

To design efficient algorithms for finding a closest pair of points (§16.8).

To solve the Eight Queens problem using the backtracking approach

(§16.9). To design efficient algorithms for finding a convex hull for a set of points (§16.10).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
3

Executing Time
Suppose two algorithms perform the same task such as search

(linear search vs. binary search) and sorting (selection sort vs.

insertion sort).

Which one is better? One possible approach to answer this

question is to implement these algorithms in a Programming

language and run the programs to get execution time. But there

are two problems for this approach:

First, there are many tasks running concurrently on a computer.
The execution time of a particular program is dependent on the
system load.

Second, the execution time is dependent on specific input.
Consider linear search and binary search for example. If an
element to be searched happens to be the first in the list, linear
search will find the element quicker than binary search.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
4

Growth Rate

It is very difficult to compare algorithms by measuring

their execution time.

To overcome these problems, a theoretical approach

was developed to analyze algorithms independent of

computers and specific input.

This approach approximates the effect of a change on

the size of the input.

In this way, you can see how fast an algorithm’s

execution time increases as the input size increases, so

you can compare two algorithms by examining their

growth rates.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
5

Big O Notation
Consider linear search. The linear search algorithm compares
the key with the elements in the array sequentially until the
key is found or the array is exhausted. If the key is not in the
array, it requires n comparisons for an array of size n. If the
key is in the array, it requires n/2 comparisons on average.
The algorithm’s execution time is proportional to the size of
the array. If you double the size of the array, you will expect
the number of comparisons to double.
The algorithm grows at a linear rate. The growth rate has an
order of magnitude of n.
Computer scientists use the Big O notation to abbreviate for
“order of magnitude.”
Using this notation, the complexity of the linear search
algorithm is O(n), pronounced as “order of n.”

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
6

Best, Worst, and Average Cases
For the same input size, an algorithm’s execution time may vary,

depending on the input.
– An input that results in the shortest execution time is called the best-case input

and

– an input that results in the longest execution time is called the worst-case input.

Best-case and worst-case are not representative, but worst-case analysis

is very useful. You can show that the algorithm will never be slower than

the worst-case.

An average-case analysis attempts to determine the average amount of

time among all possible input of the same size. Average-case analysis is

ideal, but difficult to perform, because it is hard to determine the relative

probabilities and distributions of various input instances for many

problems.

Worst-case analysis is easier to obtain and is thus common. So, the

analysis is generally conducted for the worst-case.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
7

Ignoring Multiplicative Constants
The linear search algorithm requires n comparisons in the worst-case and
n/2 comparisons in the average-case.
Using the Big O notation, both cases require O(n) time.
The multiplicative constant (1/2) can be omitted.
Algorithm analysis is focused on growth rate. The multiplicative
constants have no impact on growth rates. The growth rate for n/2 or
100n is the same as n, i.e., O(n) = O(n/2) = O(100n).

f(n)

n

100

200

n n/2 100n

100

200

50

100

10000

20000

2 2 2 f(200) / f(100)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
8

Ignoring Non-Dominating Terms
Consider the algorithm for finding the maximum number in
an array of n elements. If n is 2, it takes one comparison to
find the maximum number. If n is 3, it takes two comparisons
to find the maximum number.
In general, it takes n-1 times of comparisons to find
maximum number in a list of n elements.
Algorithm analysis is for large input size. If the input size is
small, there is no significance to estimate an algorithm’s
efficiency.
As n grows larger, the n part in the expression n-1 dominates
the complexity.
The Big O notation allows you to ignore the non-dominating
part (e.g., -1 in the expression n-1) and highlight the
important part (e.g., n in the expression n-1). So, the
complexity of this algorithm is O(n).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
9

Useful Mathematic Summations

12

12
22....2222

1

1
....

2

)1(
)1(....321

1
)1(3210

1
)1(3210

−

−
=++++++

−

−
=++++++

+
=+−++++

+
−

+
−

n
nn

n
nn

a

a
aaaaaa

nn
nn

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
10

Examples: Determining Big-O

Repetition

Sequence

Selection

Logarithm

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
11

Repetition: Simple Loops

T(n) = (a constant c) * n = cn = O(n)

for i in range(n):

k = k + 5
constant time

executed

n times

Ignore multiplicative constants (e.g., “c”).

Time Complexity

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
12

Repetition: Nested Loops

T(n) = (a constant c) * n * n = cn2 = O(n2)

for i in range(n):

for j in range(n):

k = k + i + j

constant time

executed

n times

Ignore multiplicative constants (e.g., “c”).

Time Complexity

inner loop

executed

n times

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
13

Repetition: Nested Loops

T(n) = c + 2c + 3c + 4c + … + nc = cn(n+1)/2 =

(c/2)n2 + (c/2)n = O(n2)

for i in range(n):

for j in range(i):

k = k + i + j

constant time

executed

n times

Ignore non-dominating terms

Time Complexity

inner loop

executed

i times

Ignore multiplicative constants

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
14

Repetition: Nested Loops

T(n) = 20 * c * n = O(n)

for i in range(n):

for i in range(20):

k = k + i + j

constant time

executed

n times

Time Complexity

inner loop

executed

20 times

Ignore multiplicative constants (e.g., 20*c)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
15

Sequence

T(n) = c *10 + 20 * c * n = O(n)

for i in range(n):

for i in range(20):

k = k + i + j

executed

n times

Time Complexity

inner loop

executed

20 times

for i in range(9):

k = k + 4

executed

10 times

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
16

Selection

T(n) = test time + worst-case (if, else)

= O(n) + O(n)

= O(n)

if (list.contains(e)) {

System.out.println(e);

}

else

for (Object t: list) {

System.out.println(t);

}

Time Complexity

Let n be

list.size().

Executed

n times.

O(n)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
17

Constant Time
The Big O notation estimates the execution time of an algorithm in

relation to the input size.

If the time is not related to the input size, the algorithm is said to

take constant time with the notation O(1).

For example, a method that retrieves an element at a given index in

an array takes constant time, because it does not grow as the size of

the array increases.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
18

Searching Lists

Searching is the process of looking for a specific element in
a list; for example, discovering whether a certain score is
included in a list of scores. Searching is a common task in
computer programming. There are many algorithms and data
structures devoted to searching. In this section, two
commonly used approaches are discussed, linear search and
binary search.

The function for finding a key in the list

def linearSearch(lst, key):

 for i in range(0, len(lst)):

 if key == lst[i]:

 return i

 return -1

 lst

key Compare key with lst[i] for i = 0, 1, …

 [0] [1] [2] …

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
19

Linear Search

The linear search approach compares the key

element, key, sequentially with each element in

list. The method continues to do so until the key

matches an element in the list or the list is

exhausted without a match being found.

If a match is made, the linear search returns the

index of the element in the list that matches the

key.

If no match is found, the search returns -1.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
20

Linear Search Animation

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

3

3

3

3

3

3

animation

Key List

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
21

http://www.cs.armstrong.edu/liang/animation/LinearSearc
hAnimation.html

Linear Search Animation
animation

Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
22

Binary Search

For binary search to work, the elements in

the list must already be ordered. Without loss

of generality, assume that the list is in

ascending order.

e.g., 2 4 7 10 11 45 50 59 60 66 69 70 79

The binary search first compares the key

with the element in the middle of the list.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
23

Binary Search, cont.

If the key is less than the middle element,
you only need to search the key in the first
half of the list.

If the key is equal to the middle element,
the search ends with a match.

If the key is greater than the middle
element, you only need to search the key in
the second half of the list.

Consider the following three cases:

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
24

Binary Search

1 2 3 4 6 7 8 9

1 2 3 4 6 7 8 9

1 2 3 4 6 7 8 9

8

8

8

Key List

animation

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
25

http://www.cs.armstrong.edu/liang/animation/BinarySearc
hAnimation.html

Binary Search Animation
animation

Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
26

Binary Search, cont.

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

 2 4 7 10 11 45 50 59 60 66 69 70 79

 key is 11

 key < 50

 lst

mid

 [0] [1] [2] [3] [4] [5]

 key > 7

 key == 11

high low

mid high low

 lst

 [3] [4] [5]

mid high low

 lst

 2 4 7 10 11 45

 10 11 45

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
27

Binary Search, cont.

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

 2 4 7 10 11 45 50 59 60 66 69 70 79

 key is 54

 key > 50

 lst

mid

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

 key < 66

 key < 59

high low

mid high low

 lst

 [7] [8]

mid high low

 lst

 59 60 66 69 70 79

 59 60

 [6] [7] [8]

high low

 59 60

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
28

Binary Search, cont.

The binarySearch method returns the index of

the element in the list that matches the search

key if it is contained in the list.

Otherwise, it returns

-insertion point - 1.

The insertion point is the point at which the key

would be inserted into the list.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
29

From Idea to Soluton
Use binary search to find the key in the list

def binarySearch(lst, key):

low = 0

high = len(lst) - 1

while high >= low:

mid = (low + high) // 2

if key < lst[mid]:

high = mid - 1

elif key == lst[mid]:

return mid

else:

low = mid + 1

return –low - 1 # Now high < low, key not found

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
30

Logarithm: Analyzing Binary Search

The binary search algorithm presented searches a key in a sorted

array. Each iteration in the algorithm contains a fixed number of

operations, denoted by c. Let T(n) denote the time complexity for a

binary search on a list of n elements. Without loss of generality,

assume n is a power of 2 and k=log2(n). Since binary search

eliminates half of the input after two comparisons,

ncncTck
n

Tcc
n

Tc
n

TnT
k

log1log)1()
2

(...)
2

()
2

()(
2

+=+=+==++=+=

)(log nO=

kn 2=

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
31

Logarithmic Time

Ignoring constants and smaller terms, the complexity of the

binary search algorithm is O(logn).

An algorithm with the O(logn) time complexity is called a

logarithmic algorithm.

The base of the log is 2, but the base does not affect a

logarithmic growth rate, so it can be omitted.

The logarithmic algorithm grows slowly as the problem size

increases.

If you square the input size, you only double the time for the

algorithm.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Hashing

In previous sections we were able to make
improvements in our search algorithms by taking
advantage of information about where items are stored
in the collection with respect to one another.

For example, by knowing that a list was ordered, we
could search in logarithmic time using a binary search.

In this section we will attempt to go one step further by
building a data structure that can be searched in O(1)
time. This concept is referred to as hashing.

Study:
https://runestone.academy/runestone/books/published/py
thonds/SortSearch/Hashing.html

32

https://runestone.academy/runestone/books/published/pythonds/SortSearch/Hashing.html

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
33

Selection sort finds the smallest number in the list and places it at the beginning. It then
finds the next smallest number in the remaining part and places it next to first, and so on
until the list contains only a single number. Figure 16.17 shows how to sort the list {2, 9,
5, 4, 8, 1, 6} using selection sort.

Selection Sort

2 9 5 4 8 1 6

swap

Select 1 (the smallest) and swap it

with 2 (the first) in the list

1 9 5 4 8 2 6

swap

 The number 1 is now in the

correct position and thus no
longer needs to be considered.

1 2 5 4 8 9 6

swap

1 2 4 5 8 9 6

Select 2 (the smallest) and swap it

with 9 (the first) in the remaining

list

The number 2 is now in the
correct position and thus no

longer needs to be considered.

Select 4 (the smallest) and swap it

with 5 (the first) in the remaining

list

 The number 6 is now in the

correct position and thus no

longer needs to be considered.

1 2 4 5 8 9 6

Select 6 (the smallest) and swap it

with 8 (the first) in the remaining
list

1 2 4 5 6 9 8

swap

The number 6 is now in the

correct position and thus no

longer needs to be considered.

1 2 4 5 6 8 9

Select 8 (the smallest) and swap it

with 9 (the first) in the remaining

list

The number 8 is now in the

correct position and thus no

longer needs to be considered.

Since there is only one element
remaining in the list, sort is

completed

5 is the smallest and in the right

position. No swap is necessary

The number 5 is now in the

correct position and thus no

longer needs to be considered.

swap

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
34

http://www.cs.armstrong.edu/liang/animation/SelectionSo
rtAnimation.html

Selection Sort Animation
animation

Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
35

From Idea to Solution
for i in range(0, len(lst)):

select the smallest element in lst[i.. len(lst)-1]

swap the smallest with lst[i], if necessary

lst[i] is in its correct position.

The next iteration apply on lst[i+1..len(lst)-1]

lst[0] lst[1] lst[2] lst[3] ... lst[10]

lst[0] lst[1] lst[2] lst[3] ... lst[10]

lst[0] lst[1] lst[2] lst[3] ... lst[10]

lst[0] lst[1] lst[2] lst[3] ... lst[10]

lst[0] lst[1] lst[2] lst[3] ... lst[10]

...

lst[0] lst[1] lst[2] lst[3] ... lst[10]

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
36

Expand

for i in range(0, len(lst)):

select the smallest element in lst[i.. len(lst)-1]

swap the smallest with lst[i], if necessary

lst[i] is in its correct position.

The next iteration apply on lst[i+1..len(lst)-1]

currentMin = lst[i]

currentMinIndex = i

for j in range(i + 1, len(lst)):

if currentMin > lst[j]:

currentMin = lst[j]

currentMinIndex = j

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
37

Expand

for i in range(0, len(lst)):

select the smallest element in lst[i.. len(lst)-1]

swap the smallest with lst[i], if necessary

lst[i] is in its correct position.

The next iteration apply on lst[i+1..len(lst)-1]

Find the minimum in the lst[i..len(lst)-1]

currentMin = lst[i]

currentMinIndex = i

for j in range(i + 1, len(lst)):

if currentMin > lst[j]:

currentMin = lst[j]

currentMinIndex = j

Swap lst[i] with lst[currentMinIndex] if necessary

if currentMinIndex != i:

lst[currentMinIndex] = lst[i]

lst[i] = currentMin

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
38

Wrap it in a Function
The function for sorting the numbers

def selectionSort(lst):

for i in range(0, len(lst) - 1):

Find the minimum in the lst[i..len(lst)-1]

currentMin = lst[i]

currentMinIndex = i

for j in range(i + 1, len(lst)):

if currentMin > lst[j]:

currentMin = lst[j]

currentMinIndex = j

Swap lst[i] with lst[currentMinIndex] if necessary

if currentMinIndex != i:

lst[currentMinIndex] = lst[i]

lst[i] = currentMin

Invoke (Call) it by selectionSort(yourList)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
39

Analyzing Selection Sort
The selection sort algorithm presented finds the smallest number in

the list and places it first. It then finds the smallest number

remaining and places it next to first, and so on until the list

contains only a single number.

The number of comparisons is n-1 for the first iteration, n-2 for the

second iteration, and so on.

Let T(n) denote the complexity for selection sort and c denote the

total number of other operations such as assignments and

additional comparisons in each iteration. So,

cn
nn

cccncnnT +−=+++++−++−=
22

12...)2()1()(
2

Ignoring constants and smaller terms, the complexity of the

selection sort algorithm is O(n2).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
40

Quadratic Time

An algorithm with the O(n2) time complexity is called a

quadratic algorithm.

The quadratic algorithm grows quickly as the problem

size increases.

If you double the input size, the time for the algorithm is

quadrupled.

Algorithms with a nested loop are often quadratic.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
41

Insertion Sort
myList = [2, 9, 5, 4, 8, 1, 6] # Unsorted

The insertion sort
algorithm sorts a list
of values by
repeatedly inserting
an unsorted element
into a sorted sublist
until the whole list
is sorted.

2 9 5 4 8 1 6

Step 1: Initially, the sorted sublist contains the

first element in the list. Insert 9 into the sublist.

2 9 5 4 8 1 6

Step2: The sorted sublist is [2, 9]. Insert 5 into the

sublist.

2 5 9 4 8 1 6

Step 3: The sorted sublist is [2, 5, 9]. Insert 4 into

the sublist.

2 4 5 9 8 1 6

Step 4: The sorted sublist is [2, 4, 5, 9]. Insert 8
into the sublist.

2 4 5 8 9 1 6

Step 5: The sorted sublist is [2, 4, 5, 8, 9]. Insert

1 into the sublist.

1 2 4 5 8 9 6

Step 6: The sorted sublist is [1, 2, 4, 5, 8, 9].
Insert 6 into the sublist.

1 2 4 5 6 8 9

Step 7: The entire list is now sorted

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
42

Insertion Sort

2 9 5 4 8 1 6
2 9 5 4 8 1 6

2 5 9 4 8 1 6

2 4 5 8 9 1 6

1 2 4 5 8 9 6

2 4 5 9 8 1 6

1 2 4 5 6 8 9

myList = [2, 9, 5, 4, 8, 1, 6] # Unsorted

animation

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
43

How to Insert?

The insertion sort
algorithm sorts a list
of values by
repeatedly inserting
an unsorted element
into a sorted sublist
until the whole list
is sorted.

 [0] [1] [2] [3] [4] [5] [6]

 2 5 9 4 list Step 1: Save 4 to a temporary variable currentElement

 [0] [1] [2] [3] [4] [5] [6]

 2 5 9 list Step 2: Move list[2] to list[3]

 [0] [1] [2] [3] [4] [5] [6]

 2 5 9 list Step 3: Move list[1] to list[2]

 [0] [1] [2] [3] [4] [5] [6]

 2 4 5 9 list Step 4: Assign currentElement to list[1]

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
44

From Idea to Solution
for i in range(1, len(lst)):

insert lst[i] into a sorted sublist lst[0..i-1] so that

lst[0..i] is sorted.

lst[0]

lst[0] lst[1]

lst[0] lst[1] lst[2]

lst[0] lst[1] lst[2] lst[3]

lst[0] lst[1] lst[2] lst[3] ...

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
45

From Idea to Solution
for i in range(1, len(lst)):

insert lst[i] into a sorted sublist lst[0..i-1] so that

lst[0..i] is sorted.

InsertSort

Expand
k = i - 1

while k >= 0 and lst[k] > currentElement:

lst[k + 1] = lst[k]

k -= 1

Insert the current element into lst[k + 1]

lst[k + 1] = currentElement

html/InsertionSort.html

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
46

http://www.cs.armstrong.edu/liang/animation/InsertionSor
tAnimation.html

Insertion Sort Animation
animation

Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
47

Analyzing Insertion Sort
The insertion sort algorithm sorts a list of values by repeatedly

inserting a new element into a sorted partial array until the whole

array is sorted. At the kth iteration, to insert an element to a array of

size k, it may take k comparisons to find the insertion position, and k

moves to insert the element. Let T(n) denote the complexity for

insertion sort and c denote the total number of other operations such

as assignments and additional comparisons in each iteration. So,

Ignoring constants and smaller terms, the complexity of the insertion

sort algorithm is O(n2).

cnnncnccnT +−=+−++++= 2)1(2...222)(

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
48

Towers of Hanoi

There are n disks labeled 1, 2, 3, . . ., n, and three

towers labeled A, B, and C.

No disk can be on top of a smaller disk at any

time.

All the disks are initially placed on tower A.

Only one disk can be moved at a time, and it must

be the top disk on the tower.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
49

Towers of Hanoi, cont.

3 7

6

5

4

1

A B

Original position

C
A B

Step 4: Move disk 3 from A to B

C

A B

Step 5: Move disk 1 from C to A

C
A B

Step 1: Move disk 1 from A to B

C

A C B

Step 2: Move disk 2 from A to C

A B

Step 3: Move disk 1 from B to C

C
A B

Step 7: Mve disk 1 from A to B

C

A B

Step 6: Move disk 2 from C to B

C

0

2

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
50

Solution to Towers of Hanoi
The Towers of Hanoi problem can be decomposed into three
subproblems.

A B

Original position

C

.

.

.

A B

Step 1: Move the first n-1 disks from A to C recursively

C

.

.

.

A B

Step2: Move disk n from A to B

C

.

.

.

A B

Step3: Move n-1 disks from C to B recursively

C

.

.

.

n-1 disks

n-1 disks

n-1 disks

n-1 disks

0

1

2

3

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
51

Solution to Towers of Hanoi

Move the first n - 1 disks from A to C with the assistance of tower
B.

Move disk n from A to B.

Move n - 1 disks from C to B with the assistance of tower A.

TowersOfHanoi Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Towers of Hanoi

52

Move the first n - 1 disks from A to C with the assistance of
tower B.

Move disk n from A to B.

Move n - 1 disks from C to B with the assistance of tower A.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
53

Analyzing Towers of Hanoi

The Towers of Hanoi problem presented, moves n disks from tower

A to tower B with the assistance of tower C recursively as follows:

– Move the first n – 1 disks from A to C with the assistance of

tower B.

– Move disk n from A to B.

– Move n - 1 disks from C to B with the assistance of tower A.

Let T(n) denote the complexity for the algorithm that moves disks

and c denote the constant time to move one disk, i.e., T(1) is c. So,

)2()12(2...22

2...2)1(2)))2((2(2

)1(2)1()1()(

21

21

nnnn

nn

Occccc

cccTccnT

cnTnTcnTnT

=−=++++=

=++++=++−=

+−=−++−=

−−

−−

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
54

Common Recurrence Relations

 Recurrence Relation Result Example

)1()2/()(OnTnT +=)(log)(nOnT = Binary search, Euclid’s GCD

)1()1()(OnTnT +−=)()(nOnT = Linear search

)1()2/(2)(OnTnT +=)()(nOnT =

)()2/(2)(nOnTnT +=)log()(nnOnT = Merge sort (Chapter 17)

)log()2/(2)(nnOnTnT +=)log()(2 nnOnT =

)()1()(nOnTnT +−=)()(2nOnT = Selection sort, insertion sort

)1()1(2)(OnTnT +−=)2()(nOnT = Towers of Hanoi

)1()2()1()(OnTnTnT +−+−=)2()(nOnT = Recursive Fibonacci algorithm

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
55

Comparing Common Growth Functions

)2()()()log()()(log)1(32 nOnOnOnnOnOnOO

)1(O Constant time

)(log nO Logarithmic time

)(nO Linear time

)log(nnO Log-linear time

)(2nO Quadratic time

)(3nO Cubic time

)2(nO Exponential time

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
56

Comparing Common Growth Functions

)2()()()log()()(log)1(32 nOnOnOnnOnOnOO

O(1)

O(logn)

O(n)

O(nlogn)

O(n2)
O(2n)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
57

Case Study: Fibonacci Numbers
/** The method for finding the Fibonacci number */

public static long fib(long index) {

if (index == 0) // Base case

return 0;

else if (index == 1) // Base case

return 1;

else // Reduction and recursive calls

return fib(index - 1) + fib(index - 2);

}

Finonacci series: 0 1 1 2 3 5 8 13 21 34 55 89…

indices: 0 1 2 3 4 5 6 7 8 9 10 11

fib(0) = 0;

fib(1) = 1;

fib(index) = fib(index -1) + fib(index -2); index >=2

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
58

Complexity for Recursive

Fibonacci Numbers
Since and

Therefore, the recursive Fibonacci method takes

)2(nO

)2(

)12...2(2

)12()1(2

)12...2()1(2

2...2)1(2

...

2)2(2

))2(2(2

)1(2

)2()1()(

21

11

21

21

2

n

nn

nn

nn

nn

O

cc

cT

cT

cccT

ccnT

ccnT

cnT

cnTnTnT

=

++++=

−+=

++++=

++++

++−=

++−

+−

+−+−=

−−

−−

−−

−−

)2(

222...22

222...2)1(2

222)222(2

22)22(2

2)2)4(2(2

2)2(2

)2()3()2(

)2()1()(

232/2/

232/2/

233

22

n

nn

nn

O

ccccc

ccccT

cccnT

ccnT

ccnT

cnT

cnTcnTnT

cnTnTnT

=

+++++=

+++++

+++−−−

++−−

++−

+−

+−++−+−=

+−+−=

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Recursive Version is inefficient

Recursive algorism for Fibonacci is not efficient.

The trouble with the recursive fib method is that the
method is invoked redundantly with the same
arguments.

For example, to compute fib(4), fib(3) and fib(2)
are invoked. To compute fib(3), fib(2) and fib(1) are
invoked. Note that fib(2) is redundantly invoked.

We can improve it by avoiding repeatedly calling of
the fib method with the same argument.

59

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Finding Fibonacci numbers using

dynamic programming

Note that a new Fibonacci number is obtained by
adding the preceding two numbers in the sequence.

If you use the two variables f0 and f1 to store the
two preceding numbers, the new number, f2, can be
immediately obtained by adding f0 with f1.

Now you should update f0 and f1 by assigning f1 to
f0 and assigning f2 to f1, as shown below.

60

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
61

f0 f1 f2

Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89…

indices: 0 1 2 3 4 5 6 7 8 9 10 11

f0 f1 f2

Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89…

indices: 0 1 2 3 4 5 6 7 8 9 10 11

f0 f1 f2

Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89…

indices: 0 1 2 3 4 5 6 7 8 9 10 11

f0 f1 f2

Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89…

indices: 0 1 2 3 4 5 6 7 8 9 10 11

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
62

Case Study: Non-recursive version

of Fibonacci Numbers
def fib(n):

f0 = 0 # For fib(0)

f1 = 1 # For fib(1)

f2 = 1 # For fib(2)

if n == 0:

return f0

elif n == 1:

return f1

elif n == 2:

return f2

for i in range(3, n + 1):

f0 = f1

f1 = f2

f2 = f0 + f1

return f2

Obviously, the complexity of
this new algorithm is .
This is a tremendous
improvement over the
recursive algorithm.

)n(O

Run

Improved Fibonacci

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
63

Dynamic Programming

The algorithm for computing Fibonacci numbers presented
here uses an approach known as dynamic programming.

Dynamic programming is to solve subproblems, then
combine the solutions of subproblems to obtain an overall
solution.

This naturally leads to a recursive solution. However, it
would be inefficient to use recursion, because the
subproblems overlap.

The key idea behind dynamic programming is to solve each
subprogram only once and storing the results for
subproblems for later use to avoid redundant computing of
the subproblems.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

The search for an efficient algorithm for finding

the greatest common divisor of two integers.

The greatest common divisor (GCD) of two integers is the largest
number that can evenly divide both integers.

The method on the next slide presents a brute-force algorithm for
finding the greatest common divisor of two integers m and n.

Brute force refers to an algorithmic approach that solves a problem in
the simplest or most direct or obvious way.

As a result, such an algorithm can end up doing far more work to solve
a given problem than a cleverer or more sophisticated algorithm might
do.

On the other hand, a brute-force algorithm is often easier to implement
than a more sophisticated one and, because of this simplicity,
sometimes it can be more efficient.

64

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
65

Case Study: GCD Algorithms

Version 1
def gcd(m, n):

gcd = 1

k = 2

while k <= m and k <= n:

if m % k == 0 and n % k == 0:

gcd = k

k += 1

return gcd

Obviously, the complexity
of this algorithm is .)n(O

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Improved Solutions

Is there a better algorithm for finding the

GCD?

Rather than searching a possible divisor

from 1 up, it is more efficient to search from

n down.

Once a divisor is found, the divisor is the

GCD.

66

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
67

Case Study: GCD Algorithms

Version 2

for k in range(n, 0, -1):

if m % k == 0 and n % k == 0:

gcd = k

break

The worst-case time complexity
of this algorithm is still .)n(O

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Improved Solutions

Is there a better algorithm for finding the

GCD?

A divisor for a number n cannot be greater

than n / 2, so you can further improve the

algorithm changing the initial value of the

loop

68

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
69

Case Study: GCD Algorithms

Version 3

for k in range(int(m / 2), 0, -1):

if m % k == 0 and n % k == 0:

gcd = k

break

The worst-case time complexity
of this algorithm is still .)n(O

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Improved Solutions

Is there a better algorithm for finding the
GCD?

A more efficient algorithm for finding the
GCD was discovered by Euclid around 300
b.c. This is one of the oldest known
algorithms.

It can be defined recursively as follows:
Let gcd(m, n) denote the gcd for integers m and n:

– If m % n is 0, gcd (m, n) is n.

– Otherwise, gcd(m, n) is gcd(n, m % n).

70

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
71

Euclid’sAlgorithm Implementation

def gcd(m, n):

if m % n == 0:

return n

else:

return gcd(n, m % n)

The time complexity of this
algorithm is O(logn).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

The time complexity

In the best case when m % n is 0, the

algorithm takes just one step to find the

GCD.

It is difficult to analyze the average case.

However, we can prove that the worst-case

time complexity is O(log n).

72

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

The worst case time complexity

73

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

The worst case time complexity

74

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Efficient Algorithms for Finding

Prime Numbers
https://www.eff.org/awards/coop

75

The Electronic Frontier Foundation (EFF), the first civil liberties group dedicated to
protecting the health and growth of the Internet, is sponsoring cooperative computing
awards, with over half a million dollars in prize money, to encourage ordinary Internet
users to contribute to solving huge scientific problems.

Through the EFF Cooperative Computing Awards, EFF will confer prizes of:

• $50,000 to the first individual or group who discovers a prime number with at least
1,000,000 decimal digits (awarded Apr. 6, 2000)

• $100,000 to the first individual or group who discovers a prime number with at least
10,000,000 decimal digits (awarded Oct. 22, 2009)

• $150,000 to the first individual or group who discovers a prime number with at least
100,000,000 decimal digits

• $250,000 to the first individual or group who discovers a prime number with at least
1,000,000,000 decimal digits

https://www.eff.org/press/releases/big-prime-nets-big-prize
http://www.eff.org/press/archives/2009/10/14-0

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Solutions

A brute-force algorithm for finding prime numbers:

– The algorithm checks whether 2, 3, 4, 5, . . . , or n – 1
is divisible by n. If not, n is prime. This algorithm takes
O(n) time to check whether n is prime.

Note that you need to check only whether 2, 3, 4, 5, .
. . , and n/2 is divisible by n. If not, n is prime. This
algorithm is slightly improved, but it is still of O(n).

Soluton 1: Brute-force Algorithm:

76

PrimeNumber

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Solutions

77

PrimeNumbers

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Solutions

78

EfficientPrimeNumbers

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Solutions

Let us examine the well-known Eratosthenes algorithm
for finding prime numbers.

Eratosthenes (276–194 b.c.) was a Greek mathematician
who devised a clever algorithm, known as the Sieve of
Eratosthenes, for finding all prime numbers <= n.

His algorithm is to use an array named primes of n
Boolean values. Initially, all elements in primes are set
true.

Since the multiples of 2 are not prime, set primes[2 * i]
to false for all 2 <= i <= n/2, as shown in the Figure.
Since we don’t care about primes[0] and primes[1],
these values are marked x in the figure.

79

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Sieve of Eratosthenes
Since the multiples of 3 are not prime, set primes[3 * i] to false for all 3 <= i <=
n/3. Because the multiples of 5 are not prime, set primes[5 * i] to false for all 5
<= i >= n/5.

Note that you don’t need to consider the multiples of 4, because the multiples
of 4 are also the multiples of 2, which have already been considered.
Similarly, multiples of 6, 8, and 9 need not be considered.

You only need to consider the multiples of a prime number k = 2, 3, 5, 7,11, . .
. , and set the corresponding element in primes to false.

Afterward, if primes[i] is still true, then i is a prime number. As shown in
Figure 22.3, 2, 3, 5, 7, 11, 13, 17, 19, and 23 are prime numbers.

80

SieveOfEratosthenes RunSolution 4 :

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
81

Finding Prime Numbers

Compare three versions:

Brute-force

Check possible divisors up to Math.sqrt(n)

Check possible prime divisors up to
Math.sqrt(n)

PrimeNumber

Run

EfficientPrimeNumbers

SieveOfEratosthenes

PrimeNumbers

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Time Complexities

Comparisons of Prime-Number Algorithms

82

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Finding the Closest Pair of Points

Using Divide-and-Conquer

A brute-force algorithm for finding the

closest pair of points computes the distances

between all pairs of points and finds the one

with the minimum distance.

Clearly, the algorithm takes O(n2) time.

Can we design a more efficient algorithm?

83

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
84

Divide-and-Conquer

)n(O

The divide-and-conquer approach divides the
problem into subproblems, solves the subproblems,
then combines the solutions of subproblems to
obtain the solution for the entire problem.

Unlike the dynamic programming approach, the
subproblems in the divide-and-conquer approach
don’t overlap.

A subproblem is like the original problem with a
smaller size, so you can apply recursion to solve the
problem. In fact, all the recursive problems follow
the divide-and-conquer approach.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Divide-and-conquer algorithm for

Finding the Closest Pair of Points

Step 1: Sort the points in increasing order of x-
coordinates. For the points with the same x-coordinates,
sort on y-coordinates. This results in a sorted list S of
points.

Step 2: Divide S into two subsets, S1 and S2, of equal
size using the midpoint in the sorted list. Let the
midpoint be in S1. Recursively find the closest pair in S1
and S2. Let d1 and d2 denote the distance of the closest
pairs in the two subsets, respectively.

Step 3: Find the closest pair between a point in S1 and a
point in S2 and denote their distance as d3. The closest
pair is the one with the distance min(d1, d2, d3).

85

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
86

Case Study: Closest Pair of Points

mid

d2

d1

d d

stripL stripR

S1 S2

d d

stripL stripR

p d

 stripL stripR

p

q[r]

)log()()2/(2)(nnOnOnTnT =+=

Step 3 can be done in O(n) time. Let d = min(d1, d2). We already know that the closestpair distance

cannot be larger than d. For a point in S1 and a point in S2 to form the closest pair in S, the left point

must be in stripL and the right point in stripR, as illustrated in Figure

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
87

Case Study: Closest Pair of Points

mid

d2

d1

d d

stripL stripR

S1 S2

d d

stripL stripR

p d

 stripL stripR

p

q[r]

)log()()2/(2)(nnOnOnTnT =+=

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Solving the Eight Queens

Problem Using Backtracking
The Eight Queens problem is to find a solution to place
a queen in each row on a chessboard such that no two
queens can attack each other. The problem can be solved
using recursion.

In this section, we will introduce a common algorithm
design technique called backtracking for solving this
problem.

The backtracking approach searches for a candidate
solution incrementally, abandoning that option as soon
as it determines that the candidate cannot possibly be a
valid solution, and then looks for a new candidate.

88

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Eight Queens Problem Using

Backtracking

89

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
90

Eight Queens

EightQueens Run

 0

 4

 7

 5

 2

 6

 1

 3

 queens[0]

 queens[1]

 queens[2]

 queens[3]

 queens[4]

 queens[5]

 queens[6]

 queens[7]

You can use a two-dimensional array to represent a chessboard. However, since each row

can have only one queen, it is sufficient to use a one-dimensional array to denote the

position of the queen in the row.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
91

Backtracking

There are many possible candidates? How do you
find a solution? The backtracking approach is to
search for a candidate incrementally and abandons
it as soon as it determines that the candidate cannot
possibly be a valid solution, and explores a new
candidate.

animation

http://www.cs.armstrong.edu/liang/animation/EightQueensAnimation.html

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
92

Eight Queens

 0 1 2 3 4 5 6 7

0

1

 2

 3

 4

 5

 6

 7

 upright diagonal

 upleft

check

colum

n

The isValid(row, column) method is called to check whether placing a queen at

the specified position causes a conflict with the queens placed earlier. It ensures

that no queen is placed in the same column, in the upper-left diagonal, or in the

upper-right diagonal , as shown in Figure.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
93

http://www.cs.armstrong.edu/liang/animation/ConvexHull
.html

Convex Hull Animation
animation

Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
94

Convex Hull

Given a set of points, a convex hull is a smallest convex
polygon that encloses all these points, as shown in Figure a.
A polygon is convex if every line connecting two vertices
is inside the polygon. For example, the vertices v0, v1, v2,
v3, v4, and v5 in Figure a form a convex polygon, but not
in Figure b, because the line that connects v3 and v1 is not
inside the polygon.

v4

v3

v2

v1

v0
v5

v4

v3

v2

v1

v0
v5

Figure a Figure b

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
95

Gift-Wrapping
Step 1: Given a set of points S, let the points in S be labeled s0,
s1, ..., sk. Select the rightmost lowest point h0 in the set S. Add
h0 to list H. (H is initially empty. H will hold all points in the
convex hull after the algorithm is finished.) Let t0 be h0.

h0

t0

s

t1

(Step 2: Find the rightmost point t1): Let t1 be s0. For every point

p in S. If p is on the right side of the direct line from t0 to t1 then

let t1 be p. (After Step 2, no points lie on the right side of the direct

line from t0 to t1, as shown in Figure)

t0

t1

t1 = h0 t0

Step 3: If t1 is h0, done. the points in H form a

convex hull for S.

Otherwise: add t1 to H. Let t0 be t1, go to Step 2.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
96

Gift-Wrapping Algorithm Time

Finding the rightmost lowest point in Step 1 can
be done in O(n) time. Whether a point is on the
left side of a line, right side, or on the line can
decided in O(1) time (see Exercise 3.32).

Thus, it takes O(n) time to find a new point t1 in
Step 2.

Step 2 is repeated h times, where h is the size of
the convex hull. Therefore, the algorithm takes
O(hn) time. In the worst case, h is n.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
97

Graham’s Algorithm
Given a set of points S, select the rightmost lowest
point and name it p0 in the set S. As shown in
Figure 16.7a, p0 is such a point.

Sort the points in S angularly along the x-axis with p0 as the

center. If there is a tie and two points have the same angle,

discard the one that is closest to p0. The points in S are now

sorted as p0, p1, p2, ..., pn-1.

p0

p0 x-axis

p2

p1

The convex hull is discovered incrementally. Initially, p0, p1,

and p2 form a convex hull. Consider p3. p3 is outside of the

current convex hull since points are sorted in increasing order

of their angles. If p3 is strictly on the left side of the line from

p1 to p2, push p3 into H. Now p0, p1, p2, and p3 form a

convex hull. If p3 is on the right side of the line from p1 to p2

(see Figure 9.7d), pop p2 out of H and push p3 into H. Now

p0, p1, and p3 form a convex hull and p2 is inside of this

convex hull.

p0 x-axis

p2

p1

p3

X

p0 x-axis

p2
p1 p3

X

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
98

Graham’s Algorithm Time

O(nlogn)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
99

Practical Considerations

The big O notation provides a good theoretical

estimate of algorithm efficiency. However, two

algorithms of the same time complexity are not

necessarily equally efficient. As shown in the

preceding example, both algorithms in Listings 5.6

and 16.2 have the same complexity, but the one in

Listing 16.2 is obviously better practically.

