
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
1

Chapter 16 Developing Efficient 

Algorithms
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Objectives
To estimate algorithm efficiency using the Big O notation (§16.2). 

To explain growth rates and why constants and nondominating terms can 

be ignored in the estimation (§16.2).

To determine the complexity of various types of algorithms (§16.3). 

To analyze the binary search algorithm (§16.4.1). 

To analyze the selection sort algorithm (§16.4.2). 

To analyze the insertion sort algorithm (§16.4.3). 

To analyze the Towers of Hanoi algorithm (§16.4.4). 

To describe common growth functions (constant, logarithmic, log-linear, 

quadratic, cubic, exponential) (§16.4.5).

To design efficient algorithms for finding Fibonacci numbers (§16.5).

To design efficient algorithms for finding gcd (§16.6). 

To design efficient algorithms for finding prime numbers (§16.7). 

To design efficient algorithms for finding a closest pair of points (§16.8). 

To solve the Eight Queens problem using the backtracking approach 

(§16.9). To design efficient algorithms for finding a convex hull for a set of points (§16.10).
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Executing Time 
Suppose two algorithms perform the same task such as search 

(linear search vs. binary search) and sorting (selection sort vs. 

insertion sort). 

Which one is better? One possible approach to answer this 

question is to implement these algorithms in a Programming 

language and run the programs to get execution time. But there 

are two problems for this approach:

First, there are many tasks running concurrently on a computer. 
The execution time of a particular program is dependent on the 
system load.  

Second, the execution time is dependent on specific input. 
Consider linear search and binary search for example. If an 
element to be searched happens to be the first in the list, linear 
search will find the element quicker than binary search. 



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
4

Growth Rate 

It is very difficult to compare algorithms by measuring 

their execution time. 

To overcome these problems, a theoretical approach 

was developed to analyze algorithms independent of 

computers and specific input. 

This approach approximates the effect of a change on 

the size of the input. 

In this way, you can see how fast an algorithm’s 

execution time increases as the input size increases, so 

you can compare two algorithms by examining their 

growth rates.
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Big O Notation 
Consider linear search. The linear search algorithm compares 
the key with the elements in the array sequentially until the 
key is found or the array is exhausted. If the key is not in the 
array, it requires n comparisons for an array of size n. If the 
key is in the array, it requires n/2 comparisons on average.
The algorithm’s execution time is proportional to the size of 
the array. If you double the size of the array, you will expect 
the number of comparisons to double. 
The algorithm grows at a linear rate. The growth rate has an 
order of magnitude of n. 
Computer scientists use the Big O notation to abbreviate for 
“order of magnitude.” 
Using this notation, the complexity of the linear search 
algorithm is O(n), pronounced as “order of  n.”
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Best, Worst, and Average Cases 
For the same input size, an algorithm’s execution time may vary, 

depending on the input. 
– An input that results in the shortest execution time is called the best-case input 

and 

– an input that results in the longest execution time is called the worst-case input. 

Best-case and worst-case are not representative, but worst-case analysis 

is very useful. You can show that the algorithm will never be slower than 

the worst-case. 

An average-case analysis attempts to determine the average amount of 

time among all possible input of the same size. Average-case analysis is 

ideal, but difficult to perform, because it is hard to determine the relative 

probabilities and distributions of various input instances for many 

problems. 

Worst-case analysis is easier to obtain and is thus common. So, the 

analysis is generally conducted for the worst-case.
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Ignoring Multiplicative Constants 
The linear search algorithm requires n comparisons in the worst-case and  
n/2 comparisons in the average-case. 
Using the Big  O notation, both cases require  O(n) time. 
The multiplicative constant (1/2) can be omitted. 
Algorithm analysis is focused on growth rate. The multiplicative 
constants have no impact on growth rates. The growth rate for  n/2 or 
100n is the same as n, i.e., O(n) = O(n/2) = O(100n).
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Ignoring Non-Dominating Terms
Consider the algorithm for finding the maximum number in 
an array of n elements. If  n is 2, it takes one comparison to 
find the maximum number. If n is 3, it takes two comparisons 
to find the maximum number. 
In general, it takes n-1 times of comparisons to find 
maximum number in a list of  n elements. 
Algorithm analysis is for large input size. If the input size is 
small, there is no significance to estimate an algorithm’s 
efficiency. 
As n grows larger, the n part in the expression n-1 dominates 
the complexity. 
The Big  O notation allows you to ignore the non-dominating 
part (e.g., -1 in the expression n-1) and highlight the 
important part (e.g., n in the expression n-1). So, the 
complexity of this algorithm is O(n).
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Useful Mathematic Summations
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Examples: Determining Big-O

Repetition

Sequence 

Selection

Logarithm
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Repetition: Simple Loops

T(n) = (a constant c) * n = cn = O(n)

for i in range(n):

k = k + 5
constant time

executed

n times

Ignore multiplicative constants (e.g., “c”).

Time Complexity
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Repetition: Nested Loops

T(n) = (a constant c) * n * n = cn2 = O(n2)

for i in range(n):

for j in range(n):   

k = k + i + j

constant time

executed

n times

Ignore multiplicative constants (e.g., “c”).

Time Complexity

inner loop

executed

n times
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Repetition: Nested Loops

T(n) = c + 2c + 3c + 4c + … + nc = cn(n+1)/2 = 

(c/2)n2 + (c/2)n = O(n2)

for i in range(n): 

for j in range(i):

k = k + i + j

constant time

executed

n times

Ignore non-dominating terms

Time Complexity

inner loop

executed

i times

Ignore multiplicative constants



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
14

Repetition: Nested Loops

T(n) = 20 * c * n = O(n)

for i in range(n):

for i in range(20):    

k = k + i + j

constant time

executed

n times

Time Complexity

inner loop

executed

20 times

Ignore multiplicative constants (e.g., 20*c)
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Sequence

T(n) = c *10 + 20 * c * n = O(n)

for i in range(n):

for i in range(20):     

k = k + i + j

executed

n times

Time Complexity

inner loop

executed

20 times

for i in range(9):

k = k + 4

executed

10 times
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Selection

T(n) = test time + worst-case (if, else)

= O(n) + O(n)

= O(n)

if (list.contains(e)) {

System.out.println(e);

}

else

for (Object t: list) {

System.out.println(t);

}

Time Complexity

Let n be 

list.size().

Executed

n times.

O(n)
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Constant Time
The Big O notation estimates the execution time of an algorithm in 

relation to the input size. 

If the time is not related to the input size, the algorithm is said to 

take constant time with the notation O(1).  

For example, a method that retrieves an element at a given index in 

an array takes constant time, because it does not grow as the size of 

the array increases.
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Searching Lists

Searching is the process of looking for a specific element in 
a list; for example, discovering whether a certain score is 
included in a list of scores. Searching is a common task in 
computer programming. There are many algorithms and data 
structures devoted to searching. In this section, two 
commonly used approaches are discussed, linear search and 
binary search. 

  

 

# The function for finding a key in the list  

def linearSearch(lst, key): 

    for i in range(0, len(lst)):  

        if key == lst[i]: 

            return i 

 

    return -1 

 

 lst 

key Compare key with lst[i] for i = 0, 1, … 

 [0]  [1]  [2]  … 
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Linear Search

The linear search approach compares the key 

element, key, sequentially with each element in 

list. The method continues to do so until the key 

matches an element in the list or the list is 

exhausted without a match being found. 

If a match is made, the linear search returns the 

index of the element in the list that matches the 

key. 

If no match is found, the search returns -1. 
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Linear Search Animation
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6 4 1 9 7 3 2 8
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Key List
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http://www.cs.armstrong.edu/liang/animation/LinearSearc
hAnimation.html

Linear Search Animation
animation

Run



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
22

Binary Search

For binary search to work, the elements in 

the list must already be ordered. Without loss 

of generality, assume that the list is in 

ascending order. 

e.g., 2 4 7 10 11 45 50 59 60 66 69 70 79

The binary search first compares the key 

with the element in the middle of the list. 
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Binary Search, cont.

If the key is less than the middle element, 
you only need to search the key in the first 
half of the list.

If the key is equal to the middle element, 
the search ends with a match.

If the key is greater than the middle 
element, you only need to search the key in 
the second half of the list.

Consider the following three cases:
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Binary Search

1 2 3 4 6 7 8 9

1 2 3 4 6 7 8 9

1 2 3 4 6 7 8 9

8

8

8

Key List

animation
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http://www.cs.armstrong.edu/liang/animation/BinarySearc
hAnimation.html

Binary Search Animation
animation

Run
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Binary Search, cont.

 

 [0]  [1]  [2]  [3]  [4]  [5]   [6]   [7]  [8]  [9] [10] [11] [12] 

  2     4    7    10   11   45    50   59   60   66   69   70   79 

   key  is 11 

   key  < 50 

   lst 

mid 

 [0]  [1]  [2]  [3]  [4]  [5] 

   key  > 7 

  key == 11 

high low 

mid high low 

   lst 

                     [3]  [4]  [5] 

mid high low 

   lst 

  2     4    7    10   11   45    

                    10   11   45    
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Binary Search, cont. 

 [0]  [1]  [2]  [3]  [4]  [5]   [6]   [7]  [8]  [9] [10] [11] [12] 

  2     4    7    10   11   45    50   59   60   66   69   70   79 

   key  is 54 

   key  > 50 

   lst 

mid 

 [0]  [1]  [2]  [3]  [4]  [5]   [6]   [7]  [8]  [9] [10] [11] [12] 

    key  < 66 

  key  < 59 

high low 

mid high low 

   lst 

                                                   [7]  [8]   

mid high low 

   lst 

                                                 59   60   66   69   70   79 

 

                                                   59   60 

                                            [6]  [7]  [8]   

high low 

                                                   59   60 
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Binary Search, cont.

The binarySearch method returns the index of 

the element in the list that matches the search 

key if it is contained in the list. 

Otherwise, it returns 

-insertion point - 1. 

The insertion point is the point at which the key 

would be inserted into the list.



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
29

From Idea to Soluton
# Use binary search to find the key in the list 

def binarySearch(lst, key):

low = 0

high = len(lst) - 1

while high >= low:

mid = (low + high) // 2

if key < lst[mid]:

high = mid - 1

elif key == lst[mid]:

return mid

else:

low = mid + 1

return –low - 1 # Now high < low, key not found 
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Logarithm: Analyzing Binary Search

The binary search algorithm presented  searches a key in a sorted 

array. Each iteration in the algorithm contains a fixed number of 

operations, denoted by c. Let T(n) denote the time complexity for a 

binary search on a list of  n elements. Without loss of generality, 

assume n is a power of 2 and k=log2(n). Since binary search 

eliminates half of the input after two comparisons,
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Logarithmic Time

Ignoring constants and smaller terms, the complexity of the 

binary search algorithm is O(logn). 

An algorithm with the O(logn) time complexity is called a 

logarithmic algorithm. 

The base of the log is 2, but the base does not affect a 

logarithmic growth rate, so it can be omitted. 

The logarithmic algorithm grows slowly as the problem size 

increases. 

If you square the input size, you only double the time for the 

algorithm.
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Hashing

In previous sections we were able to make 
improvements in our search algorithms by taking 
advantage of information about where items are stored 
in the collection with respect to one another. 

For example, by knowing that a list was ordered, we 
could search in logarithmic time using a binary search. 

In this section we will attempt to go one step further by 
building a data structure that can be searched in O(1)
time. This concept is referred to as hashing.

Study: 
https://runestone.academy/runestone/books/published/py
thonds/SortSearch/Hashing.html

32

https://runestone.academy/runestone/books/published/pythonds/SortSearch/Hashing.html
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Selection sort finds the smallest number in the list and places it at the beginning. It then 
finds the next smallest number in the remaining part and places it next to first, and so on 
until the list contains only a single number. Figure 16.17 shows how to sort the list {2, 9, 
5, 4, 8, 1, 6} using selection sort.

Selection Sort

 

2       9       5       4       8       1       6 

 

swap 

 
Select 1 (the smallest) and swap it 

with 2 (the first) in the list 

 

1       9       5       4       8       2       6 

 

swap 

 The number 1 is now in the 

correct position and thus no 
longer needs to be considered. 

 

1       2       5       4       8       9       6 

 

swap 

 

1       2       4       5       8       9       6 

 

Select 2 (the smallest) and swap it 

with 9 (the first) in the remaining 

list 

 
The number 2 is now in the 
correct position and thus no 

longer needs to be considered. 

 

Select 4 (the smallest) and swap it 

with 5 (the first) in the remaining 

list 

 The number 6 is now in the 

correct position and thus no 

longer needs to be considered. 

 

1       2       4       5       8       9       6 

 

Select 6 (the smallest) and swap it 

with 8 (the first) in the remaining 
list 

 

1       2       4       5       6       9       8 

 

 

swap 

 
The number 6 is now in the 

correct position and thus no 

longer needs to be considered. 

 

1       2       4       5       6       8       9 

 

Select 8 (the smallest) and swap it 

with 9 (the first) in the remaining 

list 

 
The number 8 is now in the 

correct position and thus no 

longer needs to be considered. 

 

Since there is only one element 
remaining in the list, sort is 

completed 

 

5 is the smallest and in the right 

position. No swap is necessary 

 
The number 5 is now in the 

correct position and thus no 

longer needs to be considered. 

 

swap 
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http://www.cs.armstrong.edu/liang/animation/SelectionSo
rtAnimation.html

Selection Sort Animation
animation

Run
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From Idea to Solution
for i in range(0, len(lst)):

select the smallest element in lst[i.. len(lst)-1]

swap the smallest with lst[i], if necessary

# lst[i] is in its correct position. 

# The next iteration apply on lst[i+1..len(lst)-1]

lst[0] lst[1] lst[2] lst[3] ...               lst[10]

lst[0] lst[1] lst[2] lst[3] ...               lst[10]

lst[0] lst[1] lst[2] lst[3] ...               lst[10]

lst[0] lst[1] lst[2] lst[3] ...               lst[10]

lst[0] lst[1] lst[2] lst[3] ...               lst[10]

...               

lst[0] lst[1] lst[2] lst[3] ...               lst[10]
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Expand

for i in range(0, len(lst)):

select the smallest element in lst[i.. len(lst)-1]

swap the smallest with lst[i], if necessary

# lst[i] is in its correct position. 

# The next iteration apply on lst[i+1..len(lst)-1]

currentMin = lst[i]

currentMinIndex = i

for j in range(i + 1, len(lst)):

if currentMin > lst[j]:

currentMin = lst[j]

currentMinIndex = j     
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Expand

for i in range(0, len(lst)):

select the smallest element in lst[i.. len(lst)-1]

swap the smallest with lst[i], if necessary

# lst[i] is in its correct position. 

# The next iteration apply on lst[i+1..len(lst)-1]

# Find the minimum in the lst[i..len(lst)-1]

currentMin = lst[i]

currentMinIndex = i

for j in range(i + 1, len(lst)):

if currentMin > lst[j]:

currentMin = lst[j]

currentMinIndex = j

# Swap lst[i] with lst[currentMinIndex] if necessary

if currentMinIndex != i:

lst[currentMinIndex] = lst[i]

lst[i] = currentMin      



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
38

Wrap it in a Function
# The function for sorting the numbers 

def selectionSort(lst):

for i in range(0, len(lst) - 1):

# Find the minimum in the lst[i..len(lst)-1]

currentMin = lst[i]

currentMinIndex = i

for j in range(i + 1, len(lst)):

if currentMin > lst[j]:

currentMin = lst[j]

currentMinIndex = j

# Swap lst[i] with lst[currentMinIndex] if necessary

if currentMinIndex != i:

lst[currentMinIndex] = lst[i]

lst[i] = currentMin      

Invoke (Call) it by selectionSort(yourList)
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Analyzing Selection Sort
The selection sort algorithm presented finds the smallest number in 

the list and places it first. It then finds the smallest number 

remaining and places it next to first, and so on until the list 

contains only a single number. 

The number of comparisons is n-1 for the first iteration, n-2 for the 

second iteration, and so on. 

Let T(n) denote the complexity for selection sort and c denote the 

total number of other operations such as assignments and 

additional comparisons in each iteration. So,

cn
nn

cccncnnT +−=+++++−++−=
22

12...)2()1()(
2

Ignoring constants and smaller terms, the complexity of the 

selection sort algorithm is O(n2).
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Quadratic Time

An algorithm with the O(n2) time complexity is called a 

quadratic algorithm. 

The quadratic algorithm grows quickly as the problem 

size increases. 

If you double the input size, the time for the algorithm is 

quadrupled. 

Algorithms with a nested loop are often quadratic.
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Insertion Sort
myList = [2, 9, 5, 4, 8, 1, 6] # Unsorted

The insertion sort 
algorithm sorts a list 
of values by 
repeatedly inserting 
an unsorted element 
into a sorted sublist 
until the whole list 
is sorted. 

 
2       9       5       4       8       1       6 

 

Step 1: Initially, the sorted sublist contains the 

first element in the list. Insert 9 into the sublist. 

 

2       9       5       4       8       1       6 

 

Step2: The sorted sublist is [2, 9]. Insert 5 into the 

sublist. 

 

2      5        9       4       8       1       6 

 

Step 3: The sorted sublist is [2, 5, 9]. Insert 4 into 

the sublist. 

 

2      4        5        9       8       1       6 

 

Step 4:  The sorted sublist is [2, 4, 5, 9]. Insert 8 
into the sublist. 

 

2      4         5        8      9       1       6 

 

Step 5:  The sorted sublist is [2, 4, 5, 8, 9]. Insert 

1 into the sublist. 

 

1      2        4         5        8      9      6 

 

Step 6:  The sorted sublist is [1, 2, 4, 5, 8, 9]. 
Insert 6 into the sublist. 

 

1      2        4         5       6       8      9 

 
Step 7:  The entire list is now sorted 
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Insertion Sort

2 9 5 4 8 1 6
2 9 5 4 8 1 6

2 5 9 4 8 1 6

2 4 5 8 9 1 6

1 2 4 5 8 9 6

2 4 5 9 8 1 6

1 2 4 5 6 8 9

myList = [2, 9, 5, 4, 8, 1, 6] # Unsorted

animation
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How to Insert?

The insertion sort 
algorithm sorts a list 
of values by 
repeatedly inserting 
an unsorted element 
into a sorted sublist 
until the whole list 
is sorted. 

 
 [0]  [1]  [2]  [3]  [4]  [5]   [6]    

  2     5    9     4      list Step 1: Save 4 to a temporary variable currentElement  

 [0]  [1]  [2]  [3]  [4]  [5]   [6]    

  2     5           9      list Step 2: Move list[2] to list[3] 

 [0]  [1]  [2]  [3]  [4]  [5]   [6]    

  2            5    9      list Step 3: Move list[1] to list[2] 

 [0]  [1]  [2]  [3]  [4]  [5]   [6]    

  2     4     5    9      list Step 4: Assign currentElement to list[1]  
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From Idea to Solution
for i in range(1, len(lst)):

insert lst[i] into a sorted sublist lst[0..i-1] so that 

lst[0..i] is sorted. 

lst[0]

lst[0] lst[1]

lst[0] lst[1] lst[2]

lst[0] lst[1] lst[2] lst[3]

lst[0] lst[1] lst[2] lst[3] ...
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From Idea to Solution
for i in range(1, len(lst)):

insert lst[i] into a sorted sublist lst[0..i-1] so that 

lst[0..i] is sorted.

InsertSort

Expand
k = i - 1

while k >= 0 and lst[k] > currentElement:

lst[k + 1] = lst[k]

k -= 1

# Insert the current element into lst[k + 1]          

lst[k + 1] = currentElement

html/InsertionSort.html
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http://www.cs.armstrong.edu/liang/animation/InsertionSor
tAnimation.html

Insertion Sort Animation
animation

Run
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Analyzing Insertion Sort
The insertion sort algorithm  sorts a list of values by repeatedly 

inserting a new element into a sorted partial array until the whole 

array is sorted. At the kth iteration, to insert an element to a array of 

size k, it may take k comparisons to find the insertion position, and k

moves to insert the element. Let T(n) denote the complexity for 

insertion sort and c denote the total number of other operations such 

as assignments and additional comparisons in each iteration. So,

Ignoring constants and smaller terms, the complexity of the insertion 

sort algorithm is O(n2).

cnnncnccnT +−=+−++++= 2)1(2...222)(
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Towers of Hanoi

There are n disks labeled 1, 2, 3, . . ., n, and three 

towers labeled A, B, and C.

No disk can be on top of a smaller disk at any 

time.

All the disks are initially placed on tower A.

Only one disk can be moved at a time, and it must 

be the top disk on the tower.
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Towers of Hanoi, cont.
 

3 7 

6 

5 

4 

1 

A B 

Original position 

C 
A B 

Step 4: Move disk 3 from A to B 

C 

A B 

Step 5: Move disk 1 from C to A 

C 
A B 

Step 1: Move disk 1 from A to B 

C 

A C B 

Step 2: Move disk 2 from A to C 

A B 

Step 3: Move disk 1 from B to C 

C 
A B 

Step 7: Mve disk 1 from A to B  

C 

A B 

Step 6: Move disk 2 from C to B 

C 

0 

2 
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Solution to Towers of Hanoi
The Towers of Hanoi problem can be decomposed into three 
subproblems.

 

A B 

Original position 

C 

. 

. 

. 

A B 

Step 1: Move the first n-1 disks from A to C recursively  

C 

. 

. 

. 

A B 

Step2: Move disk n from A to B 

C 

. 

. 

. 

A B 

Step3: Move n-1 disks from C to B recursively 

C 

. 

. 

. 

n-1 disks 

n-1 disks 

n-1 disks 

n-1 disks 

0 

1 

2 

3 
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Solution to Towers of Hanoi

Move the first n - 1 disks from A to C with the assistance of tower 
B.

Move disk n from A to B.

Move n - 1 disks from C to B with the assistance of tower A.

TowersOfHanoi Run
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Towers of Hanoi

52

Move the first n - 1 disks from A to C with the assistance of 
tower B.

Move disk n from A to B.

Move n - 1 disks from C to B with the assistance of tower A.
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Analyzing Towers of Hanoi

The Towers of Hanoi problem presented, moves n disks from tower 

A to tower B with the assistance of tower C recursively as follows:

– Move the first n – 1 disks from A to C with the assistance of 

tower B.

– Move disk n from A to B.

– Move n - 1 disks from C to B with the assistance of tower A.

Let T(n) denote the complexity for the algorithm that moves disks 

and c denote the constant time to move one disk, i.e., T(1) is c. So,
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Common Recurrence Relations

  Recurrence Relation                    Result              Example 

 

)1()2/()( OnTnT +=                 )(log)( nOnT =      Binary search, Euclid’s GCD 

)1()1()( OnTnT +−=                 )()( nOnT =         Linear search 

)1()2/(2)( OnTnT +=                )()( nOnT =                

)()2/(2)( nOnTnT +=               )log()( nnOnT =     Merge sort (Chapter 17)           

)log()2/(2)( nnOnTnT +=          )log()( 2 nnOnT =               

)()1()( nOnTnT +−=                )()( 2nOnT =         Selection sort, insertion sort 

)1()1(2)( OnTnT +−=               )2()( nOnT =         Towers of Hanoi 

)1()2()1()( OnTnTnT +−+−=     )2()( nOnT =         Recursive Fibonacci algorithm      
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Comparing Common Growth Functions

)2()()()log()()(log)1( 32 nOnOnOnnOnOnOO 

)1(O Constant time

)(log nO Logarithmic time

)(nO Linear time

)log( nnO Log-linear time

)( 2nO Quadratic time

)( 3nO Cubic time

)2( nO Exponential time
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Comparing Common Growth Functions

)2()()()log()()(log)1( 32 nOnOnOnnOnOnOO 

 

O(1) 

O(logn) 

O(n) 

O(nlogn) 

O(n2) 
O(2n) 
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Case Study: Fibonacci Numbers
/** The method for finding the Fibonacci number */

public static long fib(long index) {

if (index == 0) // Base case

return 0;

else if (index == 1) // Base case

return 1;

else  // Reduction and recursive calls

return fib(index - 1) + fib(index - 2);

}

Finonacci series: 0 1 1 2 3 5 8 13 21 34 55 89…

indices: 0 1 2 3 4 5 6 7  8  9  10 11

fib(0) = 0;

fib(1) = 1;

fib(index) = fib(index -1) + fib(index -2); index >=2
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Complexity for Recursive 

Fibonacci Numbers
Since and

Therefore, the recursive Fibonacci method takes     
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Recursive Version is inefficient

Recursive algorism for Fibonacci is not efficient. 

The trouble with the recursive fib method is that the 
method is invoked redundantly with the same 
arguments.

For example, to compute fib(4), fib(3) and fib(2) 
are invoked. To compute fib(3), fib(2) and fib(1) are 
invoked. Note that fib(2) is redundantly invoked.

We can improve it by avoiding repeatedly calling of 
the fib method with the same argument.

59
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Finding Fibonacci numbers using 

dynamic programming

Note that a new Fibonacci number is obtained by 
adding the preceding two numbers in the sequence. 

If you use the two variables f0 and f1 to store the 
two preceding numbers, the new number, f2, can be 
immediately obtained by adding f0 with f1. 

Now you should update f0 and f1 by assigning f1 to 
f0 and assigning f2 to f1, as shown below.

60
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f0 f1 f2

Fibonacci series: 0  1  1  2 3 5 8 13 21 34 55 89…

indices: 0  1  2  3 4 5 6 7  8  9  10 11

f0 f1 f2

Fibonacci series: 0  1  1  2  3  5  8  13  21 34 55 89…

indices: 0  1  2  3  4  5  6  7   8  9  10 11

f0 f1 f2

Fibonacci series: 0  1  1  2  3  5  8  13  21  34  55 89…

indices: 0  1  2  3  4  5  6  7   8   9   10 11

f0 f1 f2

Fibonacci series: 0  1  1  2  3  5  8  13 21 34 55 89…

indices: 0  1  2  3  4  5  6  7  8  9  10 11
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Case Study: Non-recursive version 

of Fibonacci Numbers
def fib(n):   

f0 = 0  # For fib(0)

f1 = 1  # For fib(1)

f2 = 1  # For fib(2)

if n == 0: 

return f0

elif n == 1: 

return f1

elif n == 2: 

return f2

for i in range(3, n + 1):

f0 = f1

f1 = f2

f2 = f0 + f1

return f2

Obviously, the complexity of 
this new algorithm is      . 
This is a tremendous 
improvement over the 
recursive algorithm.

)n(O

Run

Improved Fibonacci
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Dynamic Programming

The algorithm for computing Fibonacci numbers presented 
here uses an approach known as dynamic programming. 

Dynamic programming is to solve subproblems, then 
combine the solutions of subproblems to obtain an overall 
solution. 

This naturally leads to a recursive solution. However, it 
would be inefficient to use recursion, because the 
subproblems overlap. 

The key idea behind dynamic programming is to solve each 
subprogram only once and storing the results for 
subproblems for later use to avoid redundant computing of 
the subproblems. 
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The search for an efficient algorithm for finding 

the greatest common divisor of two integers.

The greatest common divisor (GCD) of two integers is the largest 
number that can evenly divide both integers.

The method on the next slide  presents a brute-force algorithm for 
finding the greatest common divisor of two integers m and n. 

Brute force refers to an algorithmic approach that solves a problem in 
the simplest or most direct or obvious way. 

As a result, such an algorithm can end up doing far more work to solve 
a given problem than a cleverer or more sophisticated algorithm might 
do. 

On the other hand, a brute-force algorithm is often easier to implement 
than a more sophisticated one and, because of this simplicity, 
sometimes it can be more efficient.

64
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Case Study: GCD Algorithms 

Version 1
def gcd(m, n):

gcd = 1 

k = 2

while k <= m and k <= n:

if m % k == 0 and n % k == 0:

gcd = k

k += 1

return gcd

Obviously, the complexity 
of this algorithm is      . )n(O
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Improved Solutions

Is there a better algorithm for finding the 

GCD? 

Rather than searching a possible divisor 

from 1 up, it is more efficient to search from 

n down. 

Once a divisor is found, the divisor is the 

GCD.
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Case Study: GCD Algorithms 

Version 2

for k in range(n, 0, -1): 

if m % k == 0 and n % k == 0:

gcd = k

break

The worst-case time complexity 
of this algorithm is still     . )n(O
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Improved Solutions

Is there a better algorithm for finding the 

GCD? 

A divisor for a number n cannot be greater 

than n / 2, so you can further improve the 

algorithm changing the initial value of the  

loop

68
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Case Study: GCD Algorithms 

Version 3

for k in range(int(m / 2), 0, -1): 

if m % k == 0 and n % k == 0:

gcd = k

break

The worst-case time complexity 
of this algorithm is still     . )n(O
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Improved Solutions

Is there a better algorithm for finding the 
GCD? 

A more efficient algorithm for finding the 
GCD was discovered by Euclid around 300 
b.c. This is one of the oldest known 
algorithms.

It can be defined recursively as follows:
Let gcd(m, n) denote the gcd for integers m and n:

– If m % n is 0, gcd (m, n) is n.

– Otherwise, gcd(m, n) is gcd(n, m % n).

70
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Euclid’sAlgorithm Implementation

def gcd(m, n):

if m % n == 0:

return n

else:

return gcd(n, m % n)

The time complexity of this 
algorithm is O(logn). 
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The time complexity 

In the best case when m % n is 0, the 

algorithm takes just one step to find the 

GCD. 

It is difficult to analyze the average case.

However, we can prove that the worst-case 

time complexity is O(log n).

72
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The worst case time complexity 

73
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The worst case time complexity 

74
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Efficient Algorithms for Finding 

Prime Numbers
https://www.eff.org/awards/coop

75

The Electronic Frontier Foundation (EFF), the first civil liberties group dedicated to 
protecting the health and growth of the Internet, is sponsoring cooperative computing 
awards, with over half a million dollars in prize money, to encourage ordinary Internet 
users to contribute to solving huge scientific problems.

Through the EFF Cooperative Computing Awards, EFF will confer prizes of:

• $50,000 to the first individual or group who discovers a prime number with at least 
1,000,000 decimal digits (awarded Apr. 6, 2000)

• $100,000 to the first individual or group who discovers a prime number with at least 
10,000,000 decimal digits (awarded Oct. 22, 2009)

• $150,000 to the first individual or group who discovers a prime number with at least 
100,000,000 decimal digits

• $250,000 to the first individual or group who discovers a prime number with at least 
1,000,000,000 decimal digits

https://www.eff.org/press/releases/big-prime-nets-big-prize
http://www.eff.org/press/archives/2009/10/14-0
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Solutions

A brute-force algorithm for finding prime numbers:

– The algorithm checks whether 2, 3, 4, 5, . . . , or n – 1 
is divisible by n. If not, n is prime. This algorithm takes 
O(n) time to check whether n is prime.

Note that you need to check only whether 2, 3, 4, 5, . 
. . , and n/2 is divisible by n. If not, n is prime. This 
algorithm is slightly improved, but it is still of O(n).

Soluton 1: Brute-force Algorithm: 

76

PrimeNumber
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Solutions

77

PrimeNumbers
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Solutions
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EfficientPrimeNumbers
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Solutions

Let us examine the well-known Eratosthenes algorithm 
for finding prime numbers.

Eratosthenes (276–194 b.c.) was a Greek mathematician 
who devised a clever algorithm, known as the Sieve of 
Eratosthenes, for finding all prime numbers <= n.

His algorithm is to use an array named primes of n 
Boolean values. Initially, all elements in primes are set 
true.

Since the multiples of 2 are not prime, set primes[2 * i] 
to false for all 2 <= i <= n/2, as shown in the Figure. 
Since we don’t care about primes[0] and primes[1], 
these values are marked x in the figure.
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Sieve of Eratosthenes
Since the multiples of 3 are not prime, set primes[3 * i] to false for all 3 <= i <=
n/3. Because the multiples of 5 are not prime, set primes[5 * i] to false for all 5 
<= i >= n/5.

Note that you don’t need to consider the multiples of 4, because the multiples 
of 4 are also the multiples of 2, which have already been considered. 
Similarly, multiples of 6, 8, and 9 need not be considered. 

You only need to consider the multiples of a prime number k = 2, 3, 5, 7,11, . . 
. , and set the corresponding element in primes to false. 

Afterward, if primes[i] is still true, then i is a prime number. As shown in 
Figure 22.3, 2, 3, 5, 7, 11, 13, 17, 19, and 23 are prime numbers.

80

SieveOfEratosthenes RunSolution 4 : 
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Finding Prime Numbers

Compare three versions:

Brute-force

Check possible divisors up to  Math.sqrt(n)

Check possible prime divisors up to  
Math.sqrt(n)

PrimeNumber

Run

EfficientPrimeNumbers

SieveOfEratosthenes

PrimeNumbers
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Time Complexities

Comparisons of Prime-Number Algorithms

82
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Finding the Closest Pair of Points 

Using Divide-and-Conquer

A brute-force algorithm for finding the 

closest pair of points computes the distances 

between all pairs of points and finds the one 

with the minimum distance. 

Clearly, the algorithm takes O(n2) time.

Can we design a more efficient algorithm?

83
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Divide-and-Conquer

)n(O

The divide-and-conquer approach divides the 
problem into subproblems, solves the subproblems, 
then combines the solutions of subproblems to 
obtain the solution for the entire problem.

Unlike the dynamic programming approach, the 
subproblems in the divide-and-conquer approach 
don’t overlap. 

A subproblem is like the original problem with a 
smaller size, so you can apply recursion to solve the 
problem. In fact, all the recursive problems follow 
the divide-and-conquer approach. 
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Divide-and-conquer algorithm for 

Finding the Closest Pair of Points

Step 1: Sort the points in increasing order of x-
coordinates. For the points with the same x-coordinates, 
sort on y-coordinates. This results in a sorted list S of 
points.

Step 2: Divide S into two subsets, S1 and S2, of equal 
size using the midpoint in the sorted list. Let the 
midpoint be in S1. Recursively find the closest pair in S1 
and S2. Let d1 and d2 denote the distance of the closest 
pairs in the two subsets, respectively.

Step 3: Find the closest pair between a point in S1 and a 
point in S2 and denote their distance as d3. The closest 
pair is the one with the distance min(d1, d2, d3).

85
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Case Study: Closest Pair of Points

 

mid 

d2 

d1 

d d 

stripL stripR 

S1 S2  

d d 

stripL stripR 

p d 

 stripL stripR 

p 

q[r] 

)log()()2/(2)( nnOnOnTnT =+=

Step 3 can be done in O(n) time. Let d = min(d1, d2). We already know that the closestpair distance 

cannot be larger than d. For a point in S1 and a point in S2 to form the closest pair in S, the left point 

must be in stripL and the right point in stripR, as illustrated in Figure
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Case Study: Closest Pair of Points

 

mid 

d2 

d1 

d d 

stripL stripR 

S1 S2  

d d 

stripL stripR 

p d 

 stripL stripR 

p 

q[r] 

)log()()2/(2)( nnOnOnTnT =+=



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Solving the Eight Queens 

Problem Using Backtracking
The Eight Queens problem is to find a solution to place 
a queen in each row on a chessboard such that no two 
queens can attack each other. The problem can be solved 
using recursion.

In this section, we will introduce a common algorithm 
design technique called backtracking for solving this 
problem. 

The backtracking approach searches for a candidate 
solution incrementally, abandoning that option as soon 
as it determines that the candidate cannot possibly be a 
valid solution, and then looks for a new candidate.
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Eight Queens Problem Using 

Backtracking

89
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Eight Queens

EightQueens Run

 
     0 

       4 

       7 

       5 

       2 

       6 

       1 

       3 

  queens[0] 

   queens[1] 

   queens[2] 

   queens[3] 

   queens[4] 

   queens[5] 

   queens[6] 

   queens[7] 

 

You can use a two-dimensional array to represent a chessboard. However, since each row

can have only one queen, it is sufficient to use a one-dimensional array to denote the 

position of the queen in the row.
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Backtracking

There are many possible candidates? How do you 
find a solution? The backtracking approach is to 
search for a candidate incrementally and abandons 
it as soon as it determines that the candidate cannot 
possibly be a valid solution, and explores a new 
candidate.

animation

http://www.cs.armstrong.edu/liang/animation/EightQueensAnimation.html
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Eight Queens
 

    0      1       2        3       4       5        6      7 
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1       

 
 2       

 

 3       
 

 4       
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 6       

 

 7       

 

 

 upright diagonal 

 

 upleft 

 

check 
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n 

 

The isValid(row, column) method is called to check whether placing a queen at 

the specified position causes a conflict with the queens placed earlier.  It ensures 

that no queen is placed in the same column, in the upper-left diagonal, or in the 

upper-right diagonal , as shown in Figure.
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http://www.cs.armstrong.edu/liang/animation/ConvexHull
.html

Convex Hull Animation
animation

Run
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Convex Hull

Given a set of points, a convex hull is a smallest convex 
polygon that encloses all these points, as shown in Figure a. 
A polygon is convex if every line connecting two vertices 
is inside the polygon. For example, the vertices v0, v1, v2, 
v3, v4, and v5 in Figure a form a convex polygon, but not 
in Figure b, because the line that connects v3 and v1 is not 
inside the polygon.

 

v4 

v3 

v2 

v1 

v0 
v5 

 

v4 

v3 

v2 

v1 

v0 
v5 

Figure a Figure b
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Gift-Wrapping
Step 1: Given a set of points S, let the points in S be labeled s0, 
s1, ..., sk. Select the rightmost lowest point h0 in the set S. Add 
h0 to list H. (H is initially empty. H will hold all points in the 
convex hull after the algorithm is finished.) Let t0 be h0. 

 

h0 

 

t0 

s 

t1 

(Step 2: Find the rightmost point t1): Let t1 be s0.  For every point 

p in S. If p is on the right side of the direct line from t0 to t1 then 

let t1 be p. (After Step 2, no points lie on the right side of the direct 

line from t0 to t1, as shown in Figure)

 

t0 

t1 

 

t1 = h0 t0 

Step 3: If t1 is h0, done. the points in H form a 

convex hull for S.

Otherwise: add t1 to H. Let t0 be t1, go to Step 2.
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Gift-Wrapping Algorithm Time

Finding the rightmost lowest point in Step 1 can 
be done in O(n) time. Whether a point is on the 
left side of a line, right side, or on the line can 
decided in O(1) time (see Exercise 3.32). 

Thus, it takes O(n) time to find a new point t1 in 
Step 2. 

Step 2 is repeated h times, where h is the size of 
the convex hull. Therefore, the algorithm takes 
O(hn) time. In the worst case, h is n.
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Graham’s Algorithm
Given a set of points S, select the rightmost lowest 
point and name it p0 in the set S. As shown in 
Figure 16.7a, p0 is such a point. 

Sort the points in S angularly along the x-axis with p0 as the 

center. If there is a tie and two points have the same angle, 

discard the one that is closest to p0. The points in S are now 

sorted as p0, p1, p2, ..., pn-1.

 

p0 

 

p0 x-axis 

p2 

p1 

The convex hull is discovered incrementally. Initially, p0, p1, 

and p2 form a convex hull. Consider p3. p3 is outside of the 

current convex hull since points are sorted in increasing order 

of their angles. If p3 is strictly on the left side of the line from 

p1 to p2, push p3 into H. Now p0, p1, p2, and p3 form a 

convex hull. If p3 is on the right side of the line from p1 to p2 

(see Figure 9.7d), pop p2 out of H and push p3 into H. Now 

p0, p1, and p3 form a convex hull and p2 is inside of this 

convex hull. 

 

p0 x-axis 

p2 

p1 

p3 

X 

 

p0 x-axis 

p2 
p1 p3 

X 
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Graham’s Algorithm Time

O(nlogn)
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Practical Considerations

The big O notation provides a good theoretical 

estimate of algorithm efficiency. However, two 

algorithms of the same time complexity are not 

necessarily equally efficient. As shown in the 

preceding example, both algorithms in Listings 5.6 

and 16.2 have the same complexity, but the one in 

Listing 16.2 is obviously better practically. 


