
Chapter 4 <1> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4

Digital Design and Computer Architecture: ARM® Edition

Sarah L. Harris and David Money Harris

Chapter 4 <2> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 :: Topics

• Introduction

• Combinational Logic

• Structural Modeling

• Sequential Logic

• More Combinational Logic

• Finite State Machines

• Parameterized Modules

• Testbenches

Chapter 4 <3> Digital Design and Computer Architecture: ARM® Edition © 2015

• Hardware description language (HDL):
– specifies logic function only
– Computer-aided design (CAD) tool produces or

synthesizes the optimized gates

• Most commercial designs built using HDLs
• Two leading HDLs:

– SystemVerilog
• developed in 1984 by Gateway Design Automation
• IEEE standard (1364) in 1995
• Extended in 2005 (IEEE STD 1800-2009)

– VHDL 2008
• Developed in 1981 by the Department of Defense
• IEEE standard (1076) in 1987
• Updated in 2008 (IEEE STD 1076-2008)

Introduction

Chapter 4 <4> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <5> Digital Design and Computer Architecture: ARM® Edition © 2015

• Simulation
– Inputs applied to circuit

– Outputs checked for correctness

– Millions of dollars saved by debugging in simulation instead of
hardware

– Example: correcting a mistake in a cutting-edge integrated circuit costs more than a million dollars and
takes several months. Intel’s infamous FDIV (floating point division) bug in the Pentium processor
forced the company to recall chips after they had shipped, at a total cost of $475 million.

– Logic simulation is essential to test a system before it is built.

• Synthesis
– Transforms HDL code into a netlist describing the hardware (i.e., a

list of gates and the wires connecting them)

HDL to Gates

Chapter 4 <6> Digital Design and Computer Architecture: ARM® Edition © 2015

• Simulation
– Inputs applied to circuit

– Outputs checked for correctness

– Millions of dollars saved by debugging in simulation
instead of hardware

• Synthesis
– Transforms HDL code into a netlist describing the hardware

(i.e., a list of gates and the wires connecting them)

IMPORTANT: When using an HDL, think of the hardware the HDL
should produce

HDL to Gates

Chapter 4 <7> Digital Design and Computer Architecture: ARM® Edition © 2015

• In our experience, the best way to learn an HDL is by example.
HDLs have specific ways of describing various classes of logic;
these ways are called idioms.

• This chapter will teach you how to write the proper HDL idioms for
each type of block and then how to put the blocks together to
produce a working system.

• When you need to describe a particular kind of hardware, look for
a similar example and adapt it to your purpose.

• We do not attempt to rigorously define all the syntax of the HDLs,
because that is deathly boring and because it tends to encourage
thinking of HDLs as programming languages, not shorthand for
hardware.

HDL

Chapter 4 <8> Digital Design and Computer Architecture: ARM® Edition © 2015

a
b y
c

Verilog

Module

Two types of Modules:
– Behavioral: describe what a module does

– Structural: describe how it is built from simpler
modules

SystemVerilog Modules

Chapter 4 <9> Digital Design and Computer Architecture: ARM® Edition © 2015

module example(input logic a, b, c,

output logic y);

assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b & c;

endmodule

SystemVerilog:

Behavioral SystemVerilog

Chapter 4 <10> Digital Design and Computer Architecture: ARM® Edition © 2015

module example(input logic a, b, c,

output logic y);

assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b & c;

endmodule

SystemVerilog:

Behavioral SystemVerilog

• module/endmodule: required to begin/end module
• example: name of the module

• Operators:
~: NOT
&: AND
|: OR

Chapter 4 <11> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <12> Digital Design and Computer Architecture: ARM® Edition © 2015

HDL Simulation

module example(input logic a, b, c,

output logic y);

assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b & c;

endmodule

SystemVerilog:

Chapter 4 <13> Digital Design and Computer Architecture: ARM® Edition © 2015

un5_y

un8_y

y

yc

b

a

HDL Synthesis

module example(input logic a, b, c,

output logic y);

assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b & c;

endmodule

SystemVerilog:

Synthesis:

Chapter 4 <14> Digital Design and Computer Architecture: ARM® Edition © 2015

• Case sensitive
– Example: reset and Reset are not the same signal.

• No names that start with numbers
– Example: 2mux is an invalid name

• Whitespace ignored

• Comments:
– // single line comment

– /* multiline

comment */

SystemVerilog Syntax

Chapter 4 <15> Digital Design and Computer Architecture: ARM® Edition © 2015

module and3(input logic a, b, c,

output logic y);

assign y = a & b & c;

endmodule

module inv(input logic a,

output logic y);

assign y = ~a;

endmodule

module nand3(input logic a, b, c

output logic y);

logic n1; // internal signal

and3 andgate(a, b, c, n1); // instance of and3

inv inverter(n1, y); // instance of inv

endmodule

Structural Modeling - Hierarchy

Chapter 4 <16> Digital Design and Computer Architecture: ARM® Edition © 2015

module gates(input logic [3:0] a, b,

output logic [3:0] y1, y2, y3, y4, y5);

/* Five different two-input logic

gates acting on 4 bit busses */

assign y1 = a & b; // AND

assign y2 = a | b; // OR

assign y3 = a ^ b; // XOR

assign y4 = ~(a & b); // NAND

assign y5 = ~(a | b); // NOR

endmodule

// single line comment

/*…*/ multiline comment

Bitwise Operators

Chapter 4 <17> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <18> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <19> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <20> Digital Design and Computer Architecture: ARM® Edition © 2015

module and8(input logic [7:0] a,

output logic y);

assign y = &a;

// &a is much easier to write than

// assign y = a[7] & a[6] & a[5] & a[4] &

// a[3] & a[2] & a[1] & a[0];

endmodule

Reduction Operators
Reduction operators imply a multiple-input gate acting on a single bus.

Chapter 4 <21> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <22> Digital Design and Computer Architecture: ARM® Edition © 2015

module mux2(input logic [3:0] d0, d1,

input logic s,

output logic [3:0] y);

assign y = s ? d1 : d0;

endmodule

? : is also called a ternary operator because it

operates on 3 inputs: s, d1, and d0.

Conditional Assignment
Conditional assignments select the output from among alternatives based on an input called
the condition.

Chapter 4 <23> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <24> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <25> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <26> Digital Design and Computer Architecture: ARM® Edition © 2015

module fulladder(input logic a, b, cin,

output logic s, cout);

logic p, g; // internal nodes

assign p = a ^ b;

assign g = a & b;

assign s = p ^ cin;

assign cout = g | (p & cin);

endmodule

p

g s

un1_cout cout

cout

s

cin

b

a

Internal Variables

Chapter 4 <27> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <28> Digital Design and Computer Architecture: ARM® Edition © 2015

~ NOT

*, /, % mult, div, mod

+, - add,sub

<<, >> shift

<<<, >>> arithmetic shift

<, <=, >, >= comparison

==, != equal, not equal

&, ~& AND, NAND

^, ~^ XOR, XNOR

|, ~| OR, NOR

?: ternary operator

Highest

Lowest

Precedence

Chapter 4 <29> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <30> Digital Design and Computer Architecture: ARM® Edition © 2015

Number # Bits Base Decimal

Equivalent

Stored

3'b101 3 binary 5 101

'b11 unsized binary 3 00…0011

8'b11 8 binary 3 00000011

8'b1010_1011 8 binary 171 10101011

3'd6 3 decimal 6 110

6'o42 6 octal 34 100010

8'hAB 8 hexadecimal 171 10101011

42 Unsized decimal 42 00…0101010

Format: N'Bvalue
N = number of bits, B = base

N'B is optional but recommended (default is decimal)

Numbers

Chapter 4 <31> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <32> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <33> Digital Design and Computer Architecture: ARM® Edition © 2015

y_1[3:0]

y[3:0]
[3:0]

en

a[3:0]
[3:0] [3:0][3:0]

module tristate(input logic [3:0] a,

input logic en,

output tri [3:0] y);

assign y = en ? a : 4'bz;

endmodule

Z: Floating Output

SystemVerilog:

Chapter 4 <34> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <35> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <36> Digital Design and Computer Architecture: ARM® Edition © 2015

assign y = {a[2:1], {3{b[0]}}, a[0], 6'b100_010};

// if y is a 12-bit signal, the above statement produces:

y = a[2] a[1] b[0] b[0] b[0] a[0] 1 0 0 0 1 0

// underscores (_) are used for formatting only to make

// it easier to read. SystemVerilog ignores them.

Bit Manipulations: Example 1

Often it is necessary to operate on a subset of a bus or to concatenate (join
together) signals to form busses. These operations are collectively
known as bit swizzling. In HDL Example 4.12, y is given the 9-bit value
c2c1d0d0d0c0101 using bit swizzling operations

Chapter 4 <37> Digital Design and Computer Architecture: ARM® Edition © 2015

module mux2_8(input logic [7:0] d0, d1,

input logic s,

output logic [7:0] y);

mux2 lsbmux(d0[3:0], d1[3:0], s, y[3:0]);

mux2 msbmux(d0[7:4], d1[7:4], s, y[7:4]);

endmodule
mux2

lsbmux

mux2

msbmux

y[7:0]
[7:0]

s

d1[7:0]
[7:0]

d0[7:0]
[7:0]

s

[3:0]
d0[3:0]

[3:0]
d1[3:0]

[3:0]
y[3:0]

s

[7:4]
d0[3:0]

[7:4]
d1[3:0]

[7:4]
y[3:0]

Bit Manipulations: Example 2
SystemVerilog:

Chapter 4 <38> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <39> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <40> Digital Design and Computer Architecture: ARM® Edition © 2015

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} = ~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Delays

Chapter 4 <41> Digital Design and Computer Architecture: ARM® Edition © 2015

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} =

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Delays

Chapter 4 <42> Digital Design and Computer Architecture: ARM® Edition © 2015

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} =

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Delays
1

Chapter 4 <43> Digital Design and Computer Architecture: ARM® Edition © 2015

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} =

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Delays
2

Chapter 4 <44> Digital Design and Computer Architecture: ARM® Edition © 2015

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} =

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Delays

2

Chapter 4 <45> Digital Design and Computer Architecture: ARM® Edition © 2015

module example(input logic a, b, c,

output logic y);

logic ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} =

~{a, b, c};

assign #2 n1 = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = n1 | n2 | n3;

endmodule

Delays

4

Chapter 4 <46> Digital Design and Computer Architecture: ARM® Edition © 2015

STRUCTURAL MODELING

• The previous section discussed behavioral modeling, describing a module in terms
of the relationships between inputs and outputs.

• This section examines structural modeling, describing a module in terms of how it
is composed of simpler modules.

• For example, HDL Example 4.14 shows how to assemble a 4:1 multiplexer from
three 2:1 multiplexers

Chapter 4 <47> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <48> Digital Design and Computer Architecture: ARM® Edition © 2015

HDL Example 4.15 uses structural modeling to construct a 2:1 multiplexer from a pair of
tristate buffers. Building logic out of tristates is not recommended, however.

Chapter 4 <49> Digital Design and Computer Architecture: ARM® Edition © 2015

• HDL Example 4.16 shows how modules can access part of a bus. An 8-bit wide 2:1
multiplexer is built using two of the 4-bit 2:1 multiplexers already defined, operating on the
low and high nibbles of the byte.

• In general, complex systems are designed hierarchically. The overall system is described
structurally by instantiating its major components. Each of these components is described
structurally from its building blocks, and so forth recursively until the pieces are simple
enough to describe behaviorally. It is good style to avoid (or at least to minimize) mixing
structural and behavioral descriptions within a single module.

Chapter 4 <50> Digital Design and Computer Architecture: ARM® Edition © 2015

• SystemVerilog uses idioms to describe
latches, flip-flops and FSMs

• HDL synthesizers recognize certain idioms
and turn them into specific sequential
circuits.

• Other coding styles may simulate correctly
but produce incorrect hardware

Sequential Logic

Chapter 4 <51> Digital Design and Computer Architecture: ARM® Edition © 2015

module flop(input logic clk,

input logic [3:0] d,

output logic [3:0] q);

always_ff @(posedge clk)

q <= d; // pronounced “q gets d”

endmodule

D Flip-Flop
The vast majority of modern commercial systems are built with registers
using positive edge-triggered D flip-flops. HDL Example 4.17 shows the
idiom for such flip-flops.

Chapter 4 <52> Digital Design and Computer Architecture: ARM® Edition © 2015

General Structure:

always @(sensitivity list)

statement;

Whenever the event in sensitivity list occurs, statement is
executed

Always Statement

In SystemVerilog always statements and VHDL process statements, signals keep their old value until an event in
the sensitivity list takes place that explicitly causes them to change. Hence, such code, with appropriate
sensitivity lists, can be used to describe sequential circuits with memory. For example, the flip-flop includes
only clk in the sensitive list. It remembers its old value of q until the next rising edge of the clk, even if d
changes in the interim.

In contrast, SystemVerilog continuous assignment statements (assign) and VHDL concurrent assignment
statements (<=) are reevaluated anytime any of the inputs on the right hand side changes. Therefore, such
code necessarily describes combinational logic.

Chapter 4 <53> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <54> Digital Design and Computer Architecture: ARM® Edition © 2015

module flopr(input logic clk,

input logic reset,

input logic [3:0] d,

output logic [3:0] q);

// synchronous reset

always_ff @(posedge clk)

if (reset) q <= 4'b0;

else q <= d;

endmodule

q[3:0]

q[3:0]
[3:0]

d[3:0]
[3:0]

reset

clk
[3:0]

Q[3:0]
[3:0]

D[3:0]
R

Resettable D Flip-Flop
When simulation begins or
power is first applied to a
circuit, the output of
a flop or register is unknown.
This is indicated with x in
SystemVerilog and
u in VHDL. Generally, it is
good practice to use
resettable registers so that
on powerup you can put your
system in a known state. The
reset may be
either asynchronous or
synchronous. Recall that
asynchronous reset
occurs immediately, whereas
synchronous reset clears the
output only on the next rising
edge of the clock.

Chapter 4 <55> Digital Design and Computer Architecture: ARM® Edition © 2015

module flopr(input logic clk,

input logic reset,

input logic [3:0] d,

output logic [3:0] q);

// asynchronous reset

always_ff @(posedge clk, posedge reset)

if (reset) q <= 4'b0;

else q <= d;

endmodule

q[3:0]

R

q[3:0]
[3:0]

d[3:0]
[3:0]

reset

clk
[3:0]

Q[3:0]
[3:0]

D[3:0]

Resettable D Flip-Flop

Chapter 4 <56> Digital Design and Computer Architecture: ARM® Edition © 2015

module flopren(input logic clk,

input logic reset,

input logic en,

input logic [3:0] d,

output logic [3:0] q);

// enable and asynchronous reset

always_ff @(posedge clk, posedge reset)

if (reset) q <= 4'b0;

else if (en) q <= d;

endmodule

D Flip-Flop with Enable
Enabled registers respond to
the clock only when the enable
is asserted.
HDL Example 4.19 shows an
asynchronously resettable
enabled register
that retains its old value if
both reset and en are FALSE.

Chapter 4 <57> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <58> Digital Design and Computer Architecture: ARM® Edition © 2015

module latch(input logic clk,

input logic [3:0] d,

output logic [3:0] q);

always_latch

if (clk) q <= d;

endmodule

Warning: We don’t use latches in this text. But you might write code that
inadvertently implies a latch. Check synthesized hardware – if it has latches
in it, there’s an error.

lat

q[3:0]

q[3:0]
[3:0]d[3:0]

[3:0]

clk

[3:0]
D[3:0] [3:0]

Q[3:0]
C

Latch
Recall from Section 3.2.2 that a D
latch is transparent when the clock is
HIGH, allowing data to flow from
input to output. The latch becomes
opaque when the clock is LOW,
retaining its old state. HDL Example
4.21 shows the idiom for a D latch.

Chapter 4 <59> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <60> Digital Design and Computer Architecture: ARM® Edition © 2015

In Section 4.2, we used assignment statements to describe combinational logic behaviorally. SystemVerilog
always statements and VHDL process statements are used to describe sequential circuits, because they
remember the old state when no new state is prescribed. However, always/process statements can also be used
to describe combinational logic behaviorally if the sensitivity list is written to respond to changes in all of the
inputs and the body prescribes the output value for every possible input combination. HDL Example 4.22 uses
always/process statements to describe a bank of four inverters (see Figure 4.3 for the synthesized circuit).

HDLs support blocking and nonblocking assignments in an always/process statement. A group of blocking
assignments are evaluated in the order in which they appear in the code, just as one would expect in a standard
programming language. A group of nonblocking assignments are evaluated concurrently; all of the statements
are evaluated before any of the signals on the left hand sides are updated.

Chapter 4 <61> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <62> Digital Design and Computer Architecture: ARM® Edition © 2015

• Statements that must be inside always
statements:
– if / else

– case, casez

Other Behavioral Statements

Chapter 4 <63> Digital Design and Computer Architecture: ARM® Edition © 2015

// combinational logic using an always statement

module gates(input logic [3:0] a, b,

output logic [3:0] y1, y2, y3, y4, y5);

always_comb // need begin/end because there is

begin // more than one statement in always

y1 = a & b; // AND

y2 = a | b; // OR

y3 = a ^ b; // XOR

y4 = ~(a & b); // NAND

y5 = ~(a | b); // NOR

end

endmodule

This hardware could be described with assign statements using fewer lines
of code, so it’s better to use assign statements in this case.

Combinational Logic using always

Chapter 4 <64> Digital Design and Computer Architecture: ARM® Edition © 2015

module sevenseg(input logic [3:0] data,

output logic [6:0] segments);

always_comb

case (data)

// abc_defg

0: segments = 7'b111_1110;

1: segments = 7'b011_0000;

2: segments = 7'b110_1101;

3: segments = 7'b111_1001;

4: segments = 7'b011_0011;

5: segments = 7'b101_1011;

6: segments = 7'b101_1111;

7: segments = 7'b111_0000;

8: segments = 7'b111_1111;

9: segments = 7'b111_0011;

default: segments = 7'b000_0000; // required

endcase

endmodule

Combinational Logic using case

Chapter 4 <65> Digital Design and Computer Architecture: ARM® Edition © 2015

• case statement implies combinational logic
only if all possible input combinations described

• Remember to use default statement

Combinational Logic using case

Chapter 4 <66> Digital Design and Computer Architecture: ARM® Edition © 2015

module priority_casez(input logic [3:0] a,

output logic [3:0] y);

always_comb

casez(a)

4'b1???: y = 4'b1000; // ?=don’t care

4'b01??: y = 4'b0100;

4'b001?: y = 4'b0010;

4'b0001: y = 4'b0001;

default: y = 4'b0000;

endcase

endmodule

Combinational Logic using casez

The casez statement acts like a case statement
except that it also recognizes ? as don’t care.

Chapter 4 <67> Digital Design and Computer Architecture: ARM® Edition © 2015

Blocking and
Nonblocking
Assignments

• The guidelines on the next page
explain when and how to use each
type of assignment.

• If these guidelines are not followed, it
is possible to write code that appears

– to work in simulation

– but synthesizes to incorrect
hardware.

Chapter 4 <69> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <70> Digital Design and Computer Architecture: ARM® Edition © 2015

• <= is nonblocking assignment
– Occurs simultaneously with others

• = is blocking assignment
– Occurs in order it appears in file
// Good synchronizer using

// nonblocking assignments

module syncgood(input logic clk,

input logic d,

output logic q);

logic n1;

always_ff @(posedge clk)

begin

n1 <= d; // nonblocking

q <= n1; // nonblocking

end

endmodule

// Bad synchronizer using

// blocking assignments

module syncbad(input logic clk,

input logic d,

output logic q);

logic n1;

always_ff @(posedge clk)

begin

n1 = d; // blocking

q = n1; // blocking

end

endmodule

Blocking vs. Nonblocking Assignment

Chapter 4 <71> Digital Design and Computer Architecture: ARM® Edition © 2015

• Synchronous sequential logic: use always_ff @(posedge

clk)and nonblocking assignments (<=)
always_ff @ (posedge clk)

q <= d; // nonblocking

• Simple combinational logic: use continuous assignments
(assign…)

assign y = a & b;

• More complicated combinational logic: use always_comb
and blocking assignments (=)

• Assign a signal in only one always statement or continuous
assignment statement.

Rules for Signal Assignment

Chapter 4 <72> Digital Design and Computer Architecture: ARM® Edition © 2015

CLK
M Nk knext

state

logic

output

logic
inputs outputs

state
next

state

• Recall that a finite state machine (FSM) consists of a state register and two blocks of
combinational logic to compute the next state and the output given the current state
and the input. HDL descriptions of state machines are correspondingly divided into
three parts to model the state register, the next state logic, and the output logic.

• Three blocks:

– next state logic

– state register

– output logic

Finite State Machines (FSMs)

Divide-by-3 Counter

A divide-by-N counter has one output and no inputs. The output Y is HIGH for
one clock cycle out of every N. In other words, the output divides the frequency
of the clock by N. The waveform and state transition diagram for a divide-by-3
counter is shown in Figure 3.28. Sketch circuit designs for such a counter using
binary and one-hot state encodings.

Chapter 4 <74> Digital Design and Computer Architecture: ARM® Edition © 2015

The double circle indicates the reset state

S 0

S 1

S 2

FSM Example: Divide by 3

Chapter 4 <78> Digital Design and Computer Architecture: ARM® Edition © 2015

module divideby3FSM (input logic clk,

input logic reset,

output logic q);

typedef enum logic [1:0] {S0, S1, S2} statetype;

statetype [1:0] state, nextstate;

// state register

always_ff @ (posedge clk, posedge reset)

if (reset) state <= S0;

else state <= nextstate;

// next state logic

always_comb

case (state)

S0: nextstate = S1;

S1: nextstate = S2;

S2: nextstate = S0;

default: nextstate = S0;

endcase

// output logic

assign q = (state == S0);

endmodule

FSM in SystemVerilog

Chapter 4 <79> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <80> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <81> Digital Design and Computer Architecture: ARM® Edition © 2015

Verilog

Chapter 4 <82> Digital Design and Computer Architecture: ARM® Edition © 2015

• So far all of our modules have had fixed-width
inputs and outputs.

• For example, we had to define separate modules for
4- and 8-bit wide 2:1 multiplexers.

• HDLs permit variable bit widths using parameterized
modules.

• HDL Example 4.34 declares a parameterized 2:1
multiplexer with a default width of 8, then uses it to
create 8- and 12-bit 4:1 multiplexers.

Parameterized Modules

Chapter 4 <83> Digital Design and Computer Architecture: ARM® Edition © 2015

2:1 mux:
module mux2

#(parameter width = 8) // name and default value

(input logic [width-1:0] d0, d1,

input logic s,

output logic [width-1:0] y);

assign y = s ? d1 : d0;

endmodule

Instance with 8-bit bus width (uses default):
mux2 myMux(d0, d1, s, out);

Instance with 12-bit bus width:
mux2 #(12) lowmux(d0, d1, s, out);

Parameterized Modules

Chapter 4 <84> Digital Design and Computer Architecture: ARM® Edition © 2015

• A testbench is an HDL module that is used to test another
module, called the device under test (DUT).

• The testbench contains statements to apply inputs to the DUT
and, ideally, to check that the correct outputs are produced.

• The input and desired output patterns are called test vectors.
• It instantiates the DUT, then applies the inputs. Blocking

assignments and delays are used to apply the inputs in the
appropriate order.

• The user must view the results of the simulation and verify by
inspection that the correct outputs are produced.

• Testbenches are simulated the same as other HDL modules.
However, they are not synthesizeable.

Testbenches

Chapter 4 <85> Digital Design and Computer Architecture: ARM® Edition © 2015

• Types:

– Simple

– Self-checking

– Self-checking with testvectors

Testbenches Types

Chapter 4 <86> Digital Design and Computer Architecture: ARM® Edition © 2015

• Write SystemVerilog code to implement the
following function in hardware:

y = bc + ab

• Name the module sillyfunction

Testbench Example

Chapter 4 <87> Digital Design and Computer Architecture: ARM® Edition © 2015

• Write SystemVerilog code to implement the
following function in hardware:

y = bc + ab

module sillyfunction(input logic a, b, c,

output logic y);

assign y = ~b & ~c | a & ~b;

endmodule

Testbench Example

Chapter 4 <88> Digital Design and Computer Architecture: ARM® Edition © 2015

module testbench1();

logic a, b, c;

logic y;

// instantiate device under test

sillyfunction dut(a, b, c, y);

// apply inputs one at a time and wait 10 time units

initial begin

a = 0; b = 0; c = 0; #10;

c = 1; #10;

b = 1; c = 0; #10;

c = 1; #10;

a = 1; b = 0; c = 0; #10;

c = 1; #10;

b = 1; c = 0; #10;

c = 1; #10;

end

endmodule

Simple Testbench

Chapter 4 <89> Digital Design and Computer Architecture: ARM® Edition © 2015

Simple Testbenches

• A simple testbench instantiates the DUT,
then applies the inputs.

• Blocking assignments and delays are used
to apply the inputs in the appropriate
order.

• The user must view the results of the
simulation and verify by inspection that
the correct outputs are produced.

Chapter 4 <90> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <91> Digital Design and Computer Architecture: ARM® Edition © 2015

• Checking for correct outputs is tedious and error-prone.
Moreover, determining the correct outputs is much easier
when the design is fresh in your mind; if you make minor
changes and need to retest weeks later, determining the
correct outputs becomes a hassle.

• A much better approach is to write a self-checking testbench.

Self-checking Testbenches

Chapter 4 <92> Digital Design and Computer Architecture: ARM® Edition © 2015

module testbench2();

logic a, b, c;

logic y;

sillyfunction dut(a, b, c, y); // instantiate dut

initial begin // apply inputs, check results one at a

time

a = 0; b = 0; c = 0; #10;

if (y !== 1) $display("000 failed.");

c = 1; #10;

if (y !== 0) $display("001 failed.");

b = 1; c = 0; #10;

if (y !== 0) $display("010 failed.");

c = 1; #10;

if (y !== 0) $display("011 failed.");

a = 1; b = 0; c = 0; #10;

if (y !== 1) $display("100 failed.");

c = 1; #10;

if (y !== 1) $display("101 failed.");

b = 1; c = 0; #10;

if (y !== 0) $display("110 failed.");

c = 1; #10;

if (y !== 0) $display("111 failed.");

end

endmodule

Self-checking Testbench

module sillyfunction(input logic a, b, c,

output logic y);

assign y = ~b & ~c | a & ~b;

endmodule

Chapter 4 <93> Digital Design and Computer Architecture: ARM® Edition © 2015

• Writing code for each test vector also becomes tedious,
especially for modules that require a large number of vectors.
An even better approach is to place the test vectors in a
separate file.

• The testbench simply reads the test vectors from the file,
applies the input test vector to the DUT, waits, checks that the
output values from the DUT match the output vector, and
repeats until reaching the end of the test vectors file.

• Testvector file: inputs and expected outputs
• Testbench:

1. Generate clock for assigning inputs, reading outputs
2. Read testvectors file into array
3. Assign inputs, expected outputs
4. Compare outputs with expected outputs and report errors

Testbench with Testvectors

Chapter 4 <94> Digital Design and Computer Architecture: ARM® Edition © 2015

• Testbench clock:
– assign inputs (on rising edge)

– compare outputs with expected outputs (on falling
edge).

• Testbench clock also used as clock for synchronous
sequential circuits

Assign

Inputs

Compare

Outputs to

Expected

CLK

Testbench with Testvectors

Chapter 4 <95> Digital Design and Computer Architecture: ARM® Edition © 2015

• File: example.tv (a text file
containing the inputs and expected

output written in binary)

• contains vectors of abc_y expected

000_1

001_0

010_0

011_0

100_1

101_1

110_0

111_0

Testvectors File

Chapter 4 <96> Digital Design and Computer Architecture: ARM® Edition © 2015

module testbench3();

logic clk, reset;

logic a, b, c, yexpected;

logic y;

logic [31:0] vectornum, errors; // bookkeeping variables

logic [3:0] testvectors[10000:0]; // array of testvectors

// instantiate device under test

sillyfunction dut(a, b, c, y);

// generate clock

always // no sensitivity list, so it always executes

begin

clk = 1; #5; clk = 0; #5;

end

1. Generate Clock

Chapter 4 <97> Digital Design and Computer Architecture: ARM® Edition © 2015

// at start of test, load vectors and pulse reset

initial

begin

$readmemb("example.tv", testvectors);

vectornum = 0; errors = 0;

reset = 1; #27; reset = 0;

end

// Note: $readmemh reads testvector files written in

// hexadecimal

2. Read Testvectors into Array

Chapter 4 <98> Digital Design and Computer Architecture: ARM® Edition © 2015

// apply test vectors on rising edge of clk

always @(posedge clk)

begin

#1; {a, b, c, yexpected} = testvectors[vectornum];

end

3. Assign Inputs & Expected Outputs

Chapter 4 <99> Digital Design and Computer Architecture: ARM® Edition © 2015

// check results on falling edge of clk

always @(negedge clk)

if (~reset) begin // skip during reset

if (y !== yexpected) begin

$display("Error: inputs = %b", {a, b, c});

$display(" outputs = %b (%b expected)",y,yexpected);

errors = errors + 1;

end

// Note: to print in hexadecimal, use %h. For example,

// $display(“Error: inputs = %h”, {a, b, c});

4. Compare with Expected Outputs

Chapter 4 <100> Digital Design and Computer Architecture: ARM® Edition © 2015

// increment array index and read next testvector

vectornum = vectornum + 1;

if (testvectors[vectornum] === 4'bx) begin

$display("%d tests completed with %d errors",

vectornum, errors);

$finish;

end

end

endmodule

// === and !== can compare values that are 1, 0, x, or z.

4. Compare with Expected Outputs

Chapter 4 <101> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <102> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 4 <103> Digital Design and Computer Architecture: ARM® Edition © 2015

• Hardware description languages (HDLs) are extremely important tools for modern
digital designers. Once you have learned SystemVerilog or VHDL, you will be able to
specify digital systems much faster than if you had to draw the complete
schematics.

• The debug cycle is also often much faster, because modifications require code
changes instead of tedious schematic rewiring. However, the debug cycle can be
much longer using HDLs if you don’t have a good idea of the hardware your code
implies.

• HDLs are used for both simulation and synthesis. Logic simulation is a powerful way
to test a system on a computer before it is turned into hardware. Simulators let you
check the values of signals inside your system that might be impossible to measure
on a physical piece of hardware.

• Logic synthesis converts the HDL code into digital logic circuits.
• The most important thing to remember when you are writing HDL code is that you

are describing real hardware, not writing a computer program.
• The most common beginner’s mistake is to write HDL code without
thinking about the hardware you intend to produce.

Summary

