
Chapter 6 <1> Digital Design and Computer Architecture: ARM® Edition © 2015

Digital Design and Computer Architecture: ARM® Edition

Chapter 6

Sarah L. Harris and David Money Harris

Chapter 6 <2> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 6 :: Topics

• Introduction

• Assembly Language

• Machine Language

• Programming

• Addressing Modes

Chapter 6 <3> Digital Design and Computer Architecture: ARM® Edition © 2015

• Jumping up a few levels of
abstraction
– Architecture: programmer’s

view of computer

• Defined by instructions &
operand locations

– Microarchitecture: how to
implement an architecture in
hardware (covered in Chapter 7)

Introduction

Chapter 6 <4> Digital Design and Computer Architecture: ARM® Edition © 2015

• Commands in a computer’s language

–Assembly language: human-readable
format of instructions

–Machine language: computer-readable
format (1’s and 0’s)

Instructions

Chapter 6 <5> Digital Design and Computer Architecture: ARM® Edition © 2015

• Developed in the 1980’s by Advanced RISC
Machines – now called ARM Holdings

• Nearly 10 billion ARM processors sold/year

• Almost all cell phones and tablets have multiple
ARM processors

• Over 75% of humans use products with an ARM
processor

• Used in servers, cameras, robots, cars, pinball
machines,, etc.

ARM Architecture

Chapter 6 <6> Digital Design and Computer Architecture: ARM® Edition © 2015

• Developed in the 1980’s by Advanced RISC
Machines – now called ARM Holdings

• Nearly 10 billion ARM processors sold/year

• Almost all cell phones and tablets have multiple
ARM processors

• Over 75% of humans use products with an ARM
processor

• Used in servers, cameras, robots, cars, pinball
machines,, etc.

ARM Architecture

Once you’ve learned one architecture, it’s easier to learn others

Chapter 6 <7> Digital Design and Computer Architecture: ARM® Edition © 2015

Underlying design principles, as articulated by
Hennessy and Patterson:

1.Regularity supports design simplicity

2.Make the common case fast

3.Smaller is faster

4.Good design demands good compromises

Architecture Design Principles

Chapter 6 <8> Digital Design and Computer Architecture: ARM® Edition © 2015

• ADD: mnemonic – indicates operation to
perform

• b, c: source operands

• a: destination operand

C Code
a = b + c;

ARM Assembly Code
ADD a, b, c

Instruction: Addition

Chapter 6 <9> Digital Design and Computer Architecture: ARM® Edition © 2015

Similar to addition - only mnemonic changes

• SUB: mnemonic

• b, c: source operands

• a: destination operand

C Code
a = b - c;

ARM assembly code
SUB a, b, c

Instruction: Subtraction

Chapter 6 <10> Digital Design and Computer Architecture: ARM® Edition © 2015

Regularity supports design simplicity

• Consistent instruction format

• Same number of operands (two sources and
one destination)

• Ease of encoding and handling in hardware

Design Principle 1

Chapter 6 <11> Digital Design and Computer Architecture: ARM® Edition © 2015

More complex code handled by multiple ARM
instructions

C Code
a = b + c - d;

ARM assembly code
ADD t, b, c ; t = b + c

SUB a, t, d ; a = t - d

Multiple Instructions

Chapter 6 <12> Digital Design and Computer Architecture: ARM® Edition © 2015

Make the common case fast
• ARM includes only simple, commonly used instructions

• Hardware to decode and execute instructions kept
simple, small, and fast

• More complex instructions (that are less common)
performed using multiple simple instructions

Design Principle 2

Chapter 6 <13> Digital Design and Computer Architecture: ARM® Edition © 2015

Make the common case fast
• ARM is a Reduced Instruction Set Computer (RISC),

with a small number of simple instructions

• Other architectures, such as Intel’s x86, are
Complex Instruction Set Computers (CISC)

Design Principle 2

Chapter 6 <14> Digital Design and Computer Architecture: ARM® Edition © 2015

Physical location in computer

– Registers

– Constants (also called immediates)

– Memory

Operand Location

Chapter 6 <15> Digital Design and Computer Architecture: ARM® Edition © 2015

• ARM has 16 registers

• Registers are faster than memory

• Each register is 32 bits

• ARM is called a “32-bit architecture”
because it operates on 32-bit data

Operands: Registers

Chapter 6 <16> Digital Design and Computer Architecture: ARM® Edition © 2015

Smaller is Faster

• ARM includes only a small number of
registers

Design Principle 3

Chapter 6 <17> Digital Design and Computer Architecture: ARM® Edition © 2015

Name Use

R0 Argument / return value / temporary variable

R1-R3 Argument / temporary variables

R4-R11 Saved variables

R12 Temporary variable

R13 (SP) Stack Pointer

R14 (LR) Link Register

R15 (PC) Program Counter

ARM Register Set

Chapter 6 <18> Digital Design and Computer Architecture: ARM® Edition © 2015

• Registers:
– R before number, all capitals

– Example: “R0” or “register zero” or “register R0”

Operands: Registers

Chapter 6 <19> Digital Design and Computer Architecture: ARM® Edition © 2015

• Registers used for specific purposes:

– Saved registers: R4-R11 hold variables

– Temporary registers: R0-R3 and R12, hold
intermediate values

– Discuss others later

Operands: Registers

Chapter 6 <20> Digital Design and Computer Architecture: ARM® Edition © 2015

Revisit ADD instruction

C Code

a = b + c

ARM Assembly Code
; R0 = a, R1 = b, R2 = c

ADD R0, R1, R2

Instructions with Registers

Chapter 6 <21> Digital Design and Computer Architecture: ARM® Edition © 2015

• Many instructions can use constants or
immediate operands

• For example: ADD and SUB

• value is immediately available from
instruction

C Code

a = a + 4;

b = a – 12;

ARM Assembly Code
; R0 = a, R1 = b

ADD R0, R0, #4

SUB R1, R0, #12

Operands: Constants\Immediates

Chapter 6 <22> Digital Design and Computer Architecture: ARM® Edition © 2015

Generating small constants using move (MOV):

C Code
//int: 32-bit signed word

int a = 23;

int b = 0x45;

ARM Assembly Code
; R0 = a, R1 = b

MOV R0, #23

MOV R1, #0x45

Generating Constants

Chapter 6 <23> Digital Design and Computer Architecture: ARM® Edition © 2015

Generating small constants using move (MOV):

Constant must have < 8 bits of precision

C Code
//int: 32-bit signed word

int a = 23;

int b = 0x45;

ARM Assembly Code
; R0 = a, R1 = b

MOV R0, #23

MOV R1, #0x45

Generating Constants

Chapter 6 <24> Digital Design and Computer Architecture: ARM® Edition © 2015

Generating small constants using move (MOV):

Constant must have < 8 bits of precision

Note: MOV can also use 2 registers: MOV R7, R9

C Code
//int: 32-bit signed word

int a = 23;

int b = 0x45;

ARM Assembly Code
; R0 = a, R1 = b

MOV R0, #23

MOV R1, #0x45

Generating Constants

Chapter 6 <25> Digital Design and Computer Architecture: ARM® Edition © 2015

Generate larger constants using move (MOV) and
or (ORR):

C Code

int a = 0x7EDC8765;

ARM Assembly Code
R0 = a

MOV R0, #0x7E000000

ORR R0, R0, #0xDC0000

ORR R0, R0, #0x8700

ORR R0, R0, #0x65

Generating Constants

Chapter 6 <26> Digital Design and Computer Architecture: ARM® Edition © 2015

• Too much data to fit in only 16 registers

• Store more data in memory

• Memory is large, but slow

• Commonly used variables still kept in registers

Operands: Memory

Chapter 6 <27> Digital Design and Computer Architecture: ARM® Edition © 2015

• Each data byte has unique address

• 32-bit word = 4 bytes, so word address
increments by 4

Byte-Addressable Memory

Chapter 6 <28> Digital Design and Computer Architecture: ARM® Edition © 2015

• Memory read called load

• Mnemonic: load register (LDR)

• Format:

LDR R0, [R1, #12]

Reading Memory

Chapter 6 <29> Digital Design and Computer Architecture: ARM® Edition © 2015

• Memory read called load

• Mnemonic: load register (LDR)

• Format:

LDR R0, [R1, #12]

Address calculation:
– add base address (R1) to the offset (12)

– address = (R1 + 12)

Result:
– R0 holds the data at memory address (R1 + 12)

Reading Memory

Chapter 6 <30> Digital Design and Computer Architecture: ARM® Edition © 2015

• Memory read called load

• Mnemonic: load register (LDR)

• Format:

LDR R0, [R1, #12]

Address calculation:
– add base address (R1) to the offset (12)

– address = (R1 + 12)

Result:
– R0 holds the data at memory address (R1 + 12)

Any register may be used as base address

Reading Memory

Chapter 6 <31> Digital Design and Computer Architecture: ARM® Edition © 2015

• Example: Read a word of data at memory
address 8 into R3

Reading Memory

Chapter 6 <32> Digital Design and Computer Architecture: ARM® Edition © 2015

• Example: Read a word of data at memory
address 8 into R3

– Address = (R2 + 8) = 8

– R3 = 0x01EE2842 after load

ARM Assembly Code
MOV R2, #0

LDR R3, [R2, #8]

Reading Memory

Chapter 6 <33> Digital Design and Computer Architecture: ARM® Edition © 2015

• Memory write are called stores

• Mnemonic: store register (STR)

Writing Memory

Chapter 6 <34> Digital Design and Computer Architecture: ARM® Edition © 2015

• Example: Store the value held in R7 into
memory word 21.

Writing Memory

Chapter 6 <35> Digital Design and Computer Architecture: ARM® Edition © 2015

• Example: Store the value held in R7 into
memory word 21.

• Memory address = 4 x 21 = 84 = 0x54

ARM assembly code
MOV R5, #0

STR R7, [R5, #0x54]

Writing Memory

Chapter 6 <36> Digital Design and Computer Architecture: ARM® Edition © 2015

• Example: Store the value held in R7 into
memory word 21.

• Memory address = 4 x 21 = 84 = 0x54

ARM assembly code
MOV R5, #0

STR R7, [R5, #0x54]

Writing Memory

The offset can be written in
decimal or hexadecimal

Chapter 6 <37> Digital Design and Computer Architecture: ARM® Edition © 2015

• Address of a memory word must be
multiplied by 4

• Examples:

– Address of memory word 2 = 2 × 4 = 8

– Address of memory word 10 = 10 × 4 = 40

Recap: Accessing Memory

Chapter 6 <38> Digital Design and Computer Architecture: ARM® Edition © 2015

• How to number bytes within a word?

Big-Endian & Little-Endian Memory

Chapter 6 <39> Digital Design and Computer Architecture: ARM® Edition © 2015

• How to number bytes within a word?
– Little-endian: byte numbers start at the little

(least significant) end

– Big-endian: byte numbers start at the big (most
significant) end

Big-Endian & Little-Endian Memory

Chapter 6 <40> Digital Design and Computer Architecture: ARM® Edition © 2015

• Jonathan Swift’s Gulliver’s Travels: the Little-Endians
broke their eggs on the little end of the egg and the
Big-Endians broke their eggs on the big end

• It doesn’t really matter which addressing type used
– except when two systems share data

Big-Endian & Little-Endian Memory

Chapter 6 <41> Digital Design and Computer Architecture: ARM® Edition © 2015

Suppose R2 and R5 hold the values 8 and
0x23456789
• After following code runs on big-endian system, what

value is in R7?

• In a little-endian system?
STR R5, [R2, #0]

LDRB R7, [R2, #1]

Big-Endian & Little-Endian Example

Chapter 6 <42> Digital Design and Computer Architecture: ARM® Edition © 2015

Suppose R2 and R5 hold the values 8 and
0x23456789
• After following code runs on big-endian system, what

value is in R7?

• In a little-endian system?
STR R5, [R2, #0]

LDRB R7, [R2, #1]

Big-Endian & Little-Endian Example

23 45 67 89

8 9 A B

23 45 67 890

B A 9 8
Word

Address

Big-Endian Little-Endian

Byte Address

Data Value

Byte Address

Data Value

MSB LSB MSB LSB

Chapter 6 <43> Digital Design and Computer Architecture: ARM® Edition © 2015

Suppose R2 and R5 hold the values 8 and
0x23456789
• After following code runs on big-endian system, what

value is in R7?

• In a little-endian system?
STR R5, [R2, #0]

LDRB R7, [R2, #1]

23 45 67 89

8 9 A B

23 45 67 890

B A 9 8
Word

Address

Big-Endian Little-Endian

Byte Address

Data Value

Byte Address

Data Value

MSB LSB MSB LSB

Big-Endian & Little-Endian Example

Big-endian:
0x00000045

Little-endian:
0x00000067

Chapter 6 <44> Digital Design and Computer Architecture: ARM® Edition © 2015

High-level languages:

– e.g., C, Java, Python

– Written at higher level of abstraction

Programming

Chapter 6 <45> Digital Design and Computer Architecture: ARM® Edition © 2015

• British mathematician

• Wrote the first computer
program

• Her program calculated
the Bernoulli numbers on
Charles Babbage’s
Analytical Engine

• She was a child of the
poet Lord Byron

Ada Lovelace, 1815-1852

Chapter 6 <46> Digital Design and Computer Architecture: ARM® Edition © 2015

• Data-processing Instructions

• Conditional Execution

• Branches

• High-level Constructs:
▪ if/else statements

▪ for loops

▪ while loops

▪ arrays

▪ function calls

Programming Building Blocks

Chapter 6 <47> Digital Design and Computer Architecture: ARM® Edition © 2015

• Data-processing Instructions

• Conditional Execution

• Branches

• High-level Constructs:
▪ if/else statements

▪ for loops

▪ while loops

▪ arrays

▪ function calls

Programming Building Blocks

Chapter 6 <48> Digital Design and Computer Architecture: ARM® Edition © 2015

• Logical operations

• Shifts / rotate

• Multiplication

Data-processing Instructions

Chapter 6 <49> Digital Design and Computer Architecture: ARM® Edition © 2015

• AND

• ORR

• EOR (XOR)

• BIC (Bit Clear)

• MVN (MoVe and NOT)

Logical Instructions

Chapter 6 <50> Digital Design and Computer Architecture: ARM® Edition © 2015

Logical Instructions: Examples

Chapter 6 <51> Digital Design and Computer Architecture: ARM® Edition © 2015

• AND or BIC: useful for masking bits

Logical Instructions: Uses

Chapter 6 <52> Digital Design and Computer Architecture: ARM® Edition © 2015

• AND or BIC: useful for masking bits

Example: Masking all but the least significant byte
of a value

0xF234012F AND 0x000000FF = 0x0000002F

0xF234012F BIC 0xFFFFFF00 = 0x0000002F

Logical Instructions: Uses

Chapter 6 <53> Digital Design and Computer Architecture: ARM® Edition © 2015

• AND or BIC: useful for masking bits

Example: Masking all but the least significant byte
of a value

0xF234012F AND 0x000000FF = 0x0000002F

0xF234012F BIC 0xFFFFFF00 = 0x0000002F

• ORR: useful for combining bit fields

Logical Instructions: Uses

Chapter 6 <54> Digital Design and Computer Architecture: ARM® Edition © 2015

• AND or BIC: useful for masking bits

Example: Masking all but the least significant byte
of a value

0xF234012F AND 0x000000FF = 0x0000002F

0xF234012F BIC 0xFFFFFF00 = 0x0000002F

• ORR: useful for combining bit fields
Example: Combine 0xF2340000 with 0x000012BC:

0xF2340000 ORR 0x000012BC = 0xF23412BC

Logical Instructions: Uses

Chapter 6 <55> Digital Design and Computer Architecture: ARM® Edition © 2015

• LSL: logical shift left

• LSR: logical shift right

• ASR: arithmetic shift right

• ROR: rotate right

Shift Instructions

Chapter 6 <56> Digital Design and Computer Architecture: ARM® Edition © 2015

• LSL: logical shift left
Example: LSL R0, R7, #5 ; R0=R7 << 5

• LSR: logical shift right

• ASR: arithmetic shift right

• ROR: rotate right

Shift Instructions

Chapter 6 <57> Digital Design and Computer Architecture: ARM® Edition © 2015

• LSL: logical shift left
Example: LSL R0, R7, #5 ; R0=R7 << 5

• LSR: logical shift right
Example: LSR R3, R2, #31 ; R3=R2 >> 31

• ASR: arithmetic shift right

• ROR: rotate right

Shift Instructions

Chapter 6 <58> Digital Design and Computer Architecture: ARM® Edition © 2015

• LSL: logical shift left
Example: LSL R0, R7, #5 ; R0=R7 << 5

• LSR: logical shift right
Example: LSR R3, R2, #31 ; R3=R2 >> 31

• ASR: arithmetic shift right
Example: ASR R9, R11, R4 ; R9=R11 >>> R47:0

• ROR: rotate right

Shift Instructions

Chapter 6 <59> Digital Design and Computer Architecture: ARM® Edition © 2015

• LSL: logical shift left
Example: LSL R0, R7, #5 ; R0=R7 << 5

• LSR: logical shift right
Example: LSR R3, R2, #31 ; R3=R2 >> 31

• ASR: arithmetic shift right
Example: ASR R9, R11, R4 ; R9=R11 >>> R47:0

• ROR: rotate right
Example: ROR R8, R1, #3 ; R8=R1 ROR 3

Shift Instructions

Chapter 6 <60> Digital Design and Computer Architecture: ARM® Edition © 2015

Shift Instructions: Example 1

• Immediate shift amount (5-bit immediate)
• Shift amount: 0-31

Chapter 6 <61> Digital Design and Computer Architecture: ARM® Edition © 2015

Shift Instructions: Example 2

• Register shift amount (uses low 8 bits of register)
• Shift amount: 0-255

Chapter 6 <62> Digital Design and Computer Architecture: ARM® Edition © 2015

• MUL: 32 × 32 multiplication, 32-bit result

• UMULL: Unsigned multiply long: 32 × 32
multiplication, 64-bit result

• SMULL: Signed multiply long: 32 × 32
multiplication, 64-bit result

Multiplication

Chapter 6 <63> Digital Design and Computer Architecture: ARM® Edition © 2015

• MUL: 32 × 32 multiplication, 32-bit result
MUL R1, R2, R3

Result: R1 = (R2 x R3)31:0

• UMULL: Unsigned multiply long: 32 × 32
multiplication, 64-bit result

• SMULL: Signed multiply long: 32 × 32
multiplication, 64-bit result

Multiplication

Chapter 6 <64> Digital Design and Computer Architecture: ARM® Edition © 2015

• MUL: 32 × 32 multiplication, 32-bit result
MUL R1, R2, R3

Result: R1 = (R2 x R3)31:0

• UMULL: Unsigned multiply long: 32 × 32
multiplication, 64-bit result

UMULL R1, R2, R3, R4

Result: {R1,R4} = R2 x R3 (R2, R3 unsigned)

• SMULL: Signed multiply long: 32 × 32
multiplication, 64-bit result

Multiplication

Chapter 6 <65> Digital Design and Computer Architecture: ARM® Edition © 2015

• MUL: 32 × 32 multiplication, 32-bit result
MUL R1, R2, R3

Result: R1 = (R2 x R3)31:0

• UMULL: Unsigned multiply long: 32 × 32
multiplication, 64-bit result

UMULL R1, R2, R3, R4

Result: {R1,R4} = R2 x R3 (R2, R3 unsigned)

• SMULL: Signed multiply long: 32 × 32
multiplication, 64-bit result

SMULL R1, R2, R3, R4

Result: {R1,R4} = R2 x R3 (R2, R3 signed)

Multiplication

Chapter 6 <66> Digital Design and Computer Architecture: ARM® Edition © 2015

• Data-processing Instructions

• Conditional Execution

• Branches

• High-level Constructs:
▪ if/else statements

▪ for loops

▪ while loops

▪ arrays

▪ function calls

Programming Building Blocks

Chapter 6 <67> Digital Design and Computer Architecture: ARM® Edition © 2015

Don’t always want to execute code sequentially

• For example:

▪ if/else statements, while loops, etc.: only
want to execute code if a condition is true

▪ branching: jump to another portion of code
if a condition is true

Conditional Execution

Chapter 6 <68> Digital Design and Computer Architecture: ARM® Edition © 2015

Don’t always want to execute code sequentially

• For example:

▪ if/else statements, while loops, etc.: only
want to execute code if a condition is true

▪ branching: jump to another portion of code
if a condition is true

• ARM includes condition flags that can be:

▪ set by an instruction

▪ used to conditionally execute an instruction

Conditional Execution

Chapter 6 <69> Digital Design and Computer Architecture: ARM® Edition © 2015

Flag Name Description

N Negative Instruction result is negative

Z Zero Instruction results in zero

C Carry Instruction causes an unsigned carry out

V oVerflow Instruction causes an overflow

ARM Condition Flags

Chapter 6 <70> Digital Design and Computer Architecture: ARM® Edition © 2015

• Set by ALU (recall from Chapter 5)

• Held in Current Program Status Register (CPSR)

ARM Condition Flags

Flag Name Description

N Negative Instruction result is negative

Z Zero Instruction results in zero

C Carry Instruction causes an unsigned carry out

V oVerflow Instruction causes an overflow

Chapter 6 <71> Digital Design and Computer Architecture: ARM® Edition © 2015

Review: ARM ALU

Chapter 6 <72> Digital Design and Computer Architecture: ARM® Edition © 2015

• Method 1: Compare instruction: CMP

Example: CMP R5, R6

▪ Performs: R5-R6

▪ Does not save result

▪ Sets flags

Setting the Condition Flags: NZCV

Chapter 6 <73> Digital Design and Computer Architecture: ARM® Edition © 2015

• Method 1: Compare instruction: CMP

Example: CMP R5, R6

▪ Performs: R5-R6

▪ Does not save result

▪ Sets flags. If result:

• Is 0, Z=1

• Is negative, N=1

• Causes a carry out, C=1

• Causes a signed overflow, V=1

Setting the Condition Flags: NZCV

Chapter 6 <74> Digital Design and Computer Architecture: ARM® Edition © 2015

• Method 1: Compare instruction: CMP
Example: CMP R5, R6

▪ Performs: R5-R6

▪ Sets flags: If result is 0 (Z=1), negative (N=1), etc.

▪ Does not save result

• Method 2: Append instruction mnemonic with S

Setting the Condition Flags: NZCV

Chapter 6 <75> Digital Design and Computer Architecture: ARM® Edition © 2015

• Method 1: Compare instruction: CMP
Example: CMP R5, R6

▪ Performs: R5-R6

▪ Sets flags: If result is 0 (Z=1), negative (N=1), etc.

▪ Does not save result

• Method 2: Append instruction mnemonic with S
Example: ADDS R1, R2, R3

▪ Performs: R2 + R3

▪ Sets flags: If result is 0 (Z=1), negative (N=1), etc.

▪ Saves result in R1

Setting the Condition Flags: NZCV

Chapter 6 <76> Digital Design and Computer Architecture: ARM® Edition © 2015

• Instruction may be conditionally executed
based on the condition flags

• Condition of execution is encoded as a
condition mnemonic appended to the
instruction mnemonic

Example: CMP R1, R2

SUBNE R3, R5, R8

▪ NE: condition mnemonic

▪ SUB will only execute if R1 ≠ R2

(i.e., Z = 0)

Condition Mnemonics

Chapter 6 <77> Digital Design and Computer Architecture: ARM® Edition © 2015

cond Mnemonic Name CondEx

0000 EQ Equal 𝑍

0001 NE Not equal ҧ𝑍

0010 CS / HS Carry set / Unsigned higher or same 𝐶

0011 CC / LO Carry clear / Unsigned lower ҧ𝐶

0100 MI Minus / Negative 𝑁

0101 PL Plus / Positive of zero ഥ𝑁

0110 VS Overflow / Overflow set 𝑉

0111 VC No overflow / Overflow clear ത𝑉

1000 HI Unsigned higher ҧ𝑍𝐶

1001 LS Unsigned lower or same 𝑍 𝑂𝑅 ҧ𝐶

1010 GE Signed greater than or equal 𝑁⊕𝑉

1011 LT Signed less than 𝑁⊕𝑉

1100 GT Signed greater than ҧ𝑍(𝑁 ⊕ 𝑉)

1101 LE Signed less than or equal 𝑍 𝑂𝑅 (𝑁⊕ 𝑉)

1110 AL (or none) Always / unconditional ignored

Condition Mnemonics

Chapter 6 <78> Digital Design and Computer Architecture: ARM® Edition © 2015

Example:
CMP R5, R9 ; performs R5-R9

; sets condition flags

SUBEQ R1, R2, R3 ; executes if R5==R9 (Z=1)

ORRMI R4, R0, R9 ; executes if R5-R9 is

; negative (N=1)

Conditional Execution

Chapter 6 <79> Digital Design and Computer Architecture: ARM® Edition © 2015

Example:
CMP R5, R9 ; performs R5-R9

; sets condition flags

SUBEQ R1, R2, R3 ; executes if R5==R9 (Z=1)

ORRMI R4, R0, R9 ; executes if R5-R9 is

; negative (N=1)

Suppose R5 = 17, R9 = 23:

CMP performs: 17 – 23 = -6 (Sets flags: N=1, Z=0, C=0, V=0)

SUBEQ doesn’t execute (they aren’t equal: Z=0)

ORRMI executes because the result was negative (N=1)

Conditional Execution

Chapter 6 <80> Digital Design and Computer Architecture: ARM® Edition © 2015

• Data-processing Instructions

• Conditional Execution

• Branches

• High-level Constructs:
▪ if/else statements

▪ for loops

▪ while loops

▪ arrays

▪ function calls

Programming Building Blocks

Chapter 6 <81> Digital Design and Computer Architecture: ARM® Edition © 2015

• Branches enable out of sequence instruction
execution

• Types of branches:
– Branch (B)

• branches to another instruction

– Branch and link (BL)

• discussed later

• Both can be conditional or unconditional

Branching

Chapter 6 <82> Digital Design and Computer Architecture: ARM® Edition © 2015

The Stored Program

Chapter 6 <83> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM assembly
MOV R2, #17 ; R2 = 17

B TARGET ; branch to target

ORR R1, R1, #0x4 ; not executed

TARGET

SUB R1, R1, #78 ; R1 = R1 + 78

Unconditional Branching (B)

Chapter 6 <84> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM assembly
MOV R2, #17 ; R2 = 17

B TARGET ; branch to target

ORR R1, R1, #0x4 ; not executed

TARGET

SUB R1, R1, #78 ; R1 = R1 + 78

Labels (like TARGET) indicate instruction location.
Labels can’t be reserved words (like ADD, ORR, etc.)

Unconditional Branching (B)

Chapter 6 <85> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly
MOV R0, #4 ; R0 = 4

ADD R1, R0, R0 ; R1 = R0+R0 = 8

CMP R0, R1 ; sets flags with R0-R1

BEQ THERE ; branch not taken (Z=0)

ORR R1, R1, #1 ; R1 = R1 OR R1 = 9

THERE

ADD R1, R1, 78 ; R1 = R1 + 78 = 87

The Branch Not Taken

Chapter 6 <86> Digital Design and Computer Architecture: ARM® Edition © 2015

Programming Building Blocks

• Data-processing Instructions

• Conditional Execution

• Branches

• High-level Constructs:
▪ if/else statements

▪ for loops

▪ while loops

▪ arrays

▪ function calls

Chapter 6 <87> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code

if (i == j)

f = g + h;

f = f – i;

if Statement

Chapter 6 <88> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code

if (i == j)

f = g + h;

f = f – i;

ARM Assembly Code
;R0=f, R1=g, R2=h, R3=i, R4=j

CMP R3, R4 ; set flags with R3-R4

BNE L1 ; if i!=j, skip if block

ADD R0, R1, R2 ; f = g + h

L1

SUB R0, R0, R2 ; f = f - i

if Statement

Chapter 6 <89> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code

if (i == j)

f = g + h;

f = f – i;

ARM Assembly Code
;R0=f, R1=g, R2=h, R3=i, R4=j

CMP R3, R4 ; set flags with R3-R4

BNE L1 ; if i!=j, skip if block

ADD R0, R1, R2 ; f = g + h

L1

SUB R0, R0, R2 ; f = f - i

if Statement

Assembly tests opposite case (i != j) of high-level code
(i == j)

Chapter 6 <90> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code

if (i == j)

f = g + h;

f = f – i;

ARM Assembly Code
;R0=f, R1=g, R2=h, R3=i, R4=j

CMP R3, R4 ; set flags with R3-R4

ADDEQ R0, R1, R2 ; if (i==j) f = g + h

SUB R0, R0, R2 ; f = f - i

if Statement: Alternate Code

Chapter 6 <91> Digital Design and Computer Architecture: ARM® Edition © 2015

Alternate Assembly Code
;R0=f, R1=g, R2=h, R3=i, R4=j

CMP R3, R4 ; set flags with R3-R4

ADDEQ R0, R1, R2 ; if (i==j) f = g + h

SUB R0, R0, R2 ; f = f - i

if Statement: Alternate Code

Original

CMP R3, R4

BNE L1

ADD R0, R1, R2

L1

SUB R0, R0, R2

Chapter 6 <92> Digital Design and Computer Architecture: ARM® Edition © 2015

Alternate Assembly Code
;R0=f, R1=g, R2=h, R3=i, R4=j

CMP R3, R4 ; set flags with R3-R4

ADDEQ R0, R1, R2 ; if (i==j) f = g + h

SUB R0, R0, R2 ; f = f - i

if Statement: Alternate Code

Original

CMP R3, R4

BNE L1

ADD R0, R1, R2

L1

SUB R0, R0, R2

Useful for short conditional blocks of code

Chapter 6 <93> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code

if (i == j)

f = g + h;

else

f = f – i;

if/else Statement

ARM Assembly Code

Chapter 6 <94> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code

if (i == j)

f = g + h;

else

f = f – i;

ARM Assembly Code
;R0=f, R1=g, R2=h, R3=i, R4=j

CMP R3, R4 ; set flags with R3-R4

BNE L1 ; if i!=j, skip if block

ADD R0, R1, R2 ; f = g + h

B L2 ; branch past else block

L1

SUB R0, R0, R2 ; f = f – i

L2

if/else Statement

Chapter 6 <95> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code

if (i == j)

f = g + h;

else

f = f – i;

ARM Assembly Code
;R0=f, R1=g, R2=h, R3=i, R4=j

CMP R3, R4 ; set flags with R3-R4

ADDEQ R0, R1, R2 ; if (i==j) f = g + h

SUBNE R0, R0, R2 ; else f = f - i

if/else Statement: Alternate Code

Chapter 6 <96> Digital Design and Computer Architecture: ARM® Edition © 2015

Alternate Assembly Code
;R0=f, R1=g, R2=h, R3=i, R4=j

CMP R3, R4 ; set flags with R3-R4

ADDEQ R0, R1, R2 ; if (i==j) f = g + h

SUBNE R0, R0, R2 ; else f = f - i

if/else Statement: Alternate Code

Original

CMP R3, R4

BNE L1

ADD R0, R1, R2

B L2

L1

SUB R0, R0, R2

L2

Chapter 6 <97> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
// determines the power

// of x such that 2x = 128

int pow = 1;

int x = 0;

while (pow != 128) {

pow = pow * 2;

x = x + 1;

}

ARM Assembly Code

while Loops

Chapter 6 <98> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
// determines the power

// of x such that 2x = 128

int pow = 1;

int x = 0;

while (pow != 128) {

pow = pow * 2;

x = x + 1;

}

ARM Assembly Code
; R0 = pow, R1 = x

MOV R0, #1 ; pow = 1

MOV R1, #0 ; x = 0

WHILE

CMP R0, #128 ; R0-128

BEQ DONE ; if (pow==128)

; exit loop

LSL R0, R0, #1 ; pow=pow*2

ADD R1, R1, #1 ; x=x+1

B WHILE ; repeat loop

DONE

while Loops

Chapter 6 <99> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
// determines the power

// of x such that 2x = 128

int pow = 1;

int x = 0;

while (pow != 128) {

pow = pow * 2;

x = x + 1;

}

ARM Assembly Code
; R0 = pow, R1 = x

MOV R0, #1 ; pow = 1

MOV R1, #0 ; x = 0

WHILE

CMP R0, #128 ; R0-128

BEQ DONE ; if (pow==128)

; exit loop

LSL R0, R0, #1 ; pow=pow*2

ADD R1, R1, #1 ; x=x+1

B WHILE ; repeat loop

DONE

Assembly tests for the opposite case (pow == 128) of the C
code (pow != 128).

while Loops

Chapter 6 <100> Digital Design and Computer Architecture: ARM® Edition © 2015

for (initialization; condition; loop operation)

statement

• initialization: executes before the loop begins

• condition: is tested at the beginning of each iteration

• loop operation: executes at the end of each iteration

• statement: executes each time the condition is met

for Loops

Chapter 6 <101> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
// adds numbers from 1-9

int sum = 0

for (i=1; i!=10; i=i+1)

sum = sum + i;

ARM Assembly Code

for Loops

Chapter 6 <102> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
// adds numbers from 1-9

int sum = 0

for (i=1; i!=10; i=i+1)

sum = sum + i;

ARM Assembly Code
; R0 = i, R1 = sum

MOV R0, #1 ; i = 1

MOV R1, #0 ; sum = 0

FOR

CMP R0, #10 ; R0-10

BEQ DONE ; if (i==10)

; exit loop

ADD R1, R1, R0 ; sum=sum + i

ADD R0, R0, #1 ; i = i + 1

B FOR ; repeat loop

DONE

for Loops

Chapter 6 <103> Digital Design and Computer Architecture: ARM® Edition © 2015

In ARM, decremented loop variables are more efficient

for Loops: Decremented Loops

Chapter 6 <104> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
// adds numbers from 1-9

int sum = 0

for (i=9; i!=0; i=i-1)

sum = sum + i;

ARM Assembly Code
; R0 = i, R1 = sum

MOV R0, #9 ; i = 9

MOV R1, #0 ; sum = 0

FOR

ADD R1, R1, R0 ; sum=sum + i

SUBS R0, R0, #1 ; i = i – 1

; and set flags

BNE FOR ; if (i!=0)

; repeat loop

In ARM, decremented loop variables are more efficient

for Loops: Decremented Loops

Chapter 6 <105> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
// adds numbers from 1-9

int sum = 0

for (i=9; i!=0; i=i-1)

sum = sum + i;

ARM Assembly Code
; R0 = i, R1 = sum

MOV R0, #9 ; i = 9

MOV R1, #0 ; sum = 0

FOR

ADD R1, R1, R0 ; sum=sum + i

SUBS R0, R0, #1 ; i = i – 1

; and set flags

BNE FOR ; if (i!=0)

; repeat loop

In ARM, decremented loop variables are more efficient

Saves 2 instructions per iteration:
• Decrement loop variable & compare: SUBS R0, R0, #1
• Only 1 branch – instead of 2

for Loops: Decremented Loops

Chapter 6 <106> Digital Design and Computer Architecture: ARM® Edition © 2015

Programming Building Blocks

• Data-processing Instructions

• Conditional Execution

• Branches

• High-level Constructs:
▪ if/else statements

▪ for loops

▪ while loops

▪ arrays

▪ function calls

Chapter 6 <107> Digital Design and Computer Architecture: ARM® Edition © 2015

• Access large amounts of similar data

▪ Index: access to each element

▪ Size: number of elements

Arrays

Chapter 6 <108> Digital Design and Computer Architecture: ARM® Edition © 2015

• 5-element array

▪ Base address = 0x14000000 (address of first
element, scores[0])

▪ Array elements accessed relative to base address

Arrays

Chapter 6 <109> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
int array[5];

array[0] = array[0] * 8;

array[1] = array[1] * 8;

ARM Assembly Code
; R0 = array base address

Accessing Arrays

Chapter 6 <110> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
int array[5];

array[0] = array[0] * 8;

array[1] = array[1] * 8;

ARM Assembly Code
; R0 = array base address

MOV R0, #0x60000000 ; R0 = 0x60000000

LDR R1, [R0] ; R1 = array[0]

LSL R1, R1, 3 ; R1 = R1 << 3 = R1*8

STR R1, [R0] ; array[0] = R1

LDR R1, [R0, #4] ; R1 = array[1]

LSL R1, R1, 3 ; R1 = R1 << 3 = R1*8

STR R1, [R0, #4] ; array[1] = R1

Accessing Arrays

Chapter 6 <111> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
int array[200];

int i;

for (i=199; i >= 0; i = i - 1)

array[i] = array[i] * 8;

ARM Assembly Code
; R0 = array base address, R1 = i

Arrays using for Loops

Chapter 6 <112> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
int array[200];

int i;

for (i=199; i >= 0; i = i - 1)

array[i] = array[i] * 8;

ARM Assembly Code
; R0 = array base address, R1 = i

MOV R0, 0x60000000

MOV R1, #199

FOR

LDR R2, [R0, R1, LSL #2] ; R2 = array(i)

LSL R2, R2, #3 ; R2 = R2<<3 = R3*8

STR R2, [R0, R1, LSL #2] ; array(i) = R2

SUBS R0, R0, #1 ; i = i – 1

; and set flags

BPL FOR ; if (i>=0) repeat loop

Arrays using for Loops

Chapter 6 <113> Digital Design and Computer Architecture: ARM® Edition © 2015

• American Standard Code for Information
Interchange

• Each text character has unique byte value

– For example, S = 0x53, a = 0x61, A = 0x41

– Lower-case and upper-case differ by 0x20 (32)

ASCII Code

Chapter 6 <114> Digital Design and Computer Architecture: ARM® Edition © 2015

Cast of Characters

Chapter 6 <115> Digital Design and Computer Architecture: ARM® Edition © 2015

Programming Building Blocks

• Data-processing Instructions

• Conditional Execution

• Branches

• High-level Constructs:
▪ if/else statements

▪ for loops

▪ while loops

▪ arrays

▪ function calls

Chapter 6 <116> Digital Design and Computer Architecture: ARM® Edition © 2015

• Caller: calling function (in this case, main)

• Callee: called function (in this case, sum)

C Code
void main()

{

int y;

y = sum(42, 7);

...

}

int sum(int a, int b)

{

return (a + b);

}

Function Calls

Chapter 6 <117> Digital Design and Computer Architecture: ARM® Edition © 2015

• Caller:
– passes arguments to callee

– jumps to callee

Function Conventions

Chapter 6 <118> Digital Design and Computer Architecture: ARM® Edition © 2015

• Caller:
– passes arguments to callee

– jumps to callee

• Callee:
– performs the function

– returns result to caller

– returns to point of call

– must not overwrite registers or memory needed by
caller

Function Conventions

Chapter 6 <119> Digital Design and Computer Architecture: ARM® Edition © 2015

• Call Function: branch and link

BL

• Return from function: move the link register
to PC: MOV PC, LR

• Arguments: R0-R3

• Return value: R0

ARM Function Conventions

Chapter 6 <120> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code

int main() {

simple();

a = b + c;

}

void simple() {

return;

}

ARM Assembly Code

0x00000200 MAIN BL SIMPLE

0x00000204 ADD R4, R5, R6

...

0x00401020 SIMPLE MOV PC, LR

Function Calls

Chapter 6 <121> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code

int main() {

simple();

a = b + c;

}

void simple() {

return;

}

ARM Assembly Code

0x00000200 MAIN BL SIMPLE

0x00000204 ADD R4, R5, R6

...

0x00401020 SIMPLE MOV PC, LR

Function Calls

void means that simple doesn’t return a value

Chapter 6 <122> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code

int main() {

simple();

a = b + c;

}

void simple() {

return;

}

BL branches to SIMPLE
LR = PC + 4 = 0x00000204

MOV PC, LR makes PC = LR

(the next instruction executed is at 0x00000200)

ARM Assembly Code

0x00000200 MAIN BL SIMPLE

0x00000204 ADD R4, R5, R6

...

0x00401020 SIMPLE MOV PC, LR

Function Calls

Chapter 6 <123> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM conventions:
• Argument values: R0 - R3

• Return value: R0

Input Arguments and Return Value

Chapter 6 <124> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
int main()

{

int y;

...

y = diffofsums(2, 3, 4, 5); // 4 arguments

...

}

int diffofsums(int f, int g, int h, int i)

{

int result;

result = (f + g) - (h + i);

return result; // return value

}

Input Arguments and Return Value

Chapter 6 <125> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly Code
; R4 = y

MAIN

...

MOV R0, #2 ; argument 0 = 2

MOV R1, #3 ; argument 1 = 3

MOV R2, #4 ; argument 2 = 4

MOV R3, #5 ; argument 3 = 5

BL DIFFOFSUMS ; call function

MOV R4, R0 ; y = returned value

...

; R4 = result

DIFFOFSUMS

ADD R8, R0, R1 ; R8 = f + g

ADD R9, R2, R3 ; R9 = h + i

SUB R4, R8, R9 ; result = (f + g) - (h + i)

MOV R0, R4 ; put return value in R0

MOV PC, LR ; return to caller

Input Arguments and Return Value

Chapter 6 <126> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly Code
; R4 = result

DIFFOFSUMS

ADD R8, R0, R1 ; R8 = f + g

ADD R9, R2, R3 ; R9 = h + i

SUB R4, R8, R9 ; result = (f + g) - (h + i)

MOV R0, R4 ; put return value in R0

MOV PC, LR ; return to caller

• diffofsums overwrote 3 registers: R4, R8, R9
•diffofsums can use stack to temporarily store registers

Input Arguments and Return Value

Chapter 6 <127> Digital Design and Computer Architecture: ARM® Edition © 2015

• Memory used to temporarily
save variables

• Like stack of dishes, last-in-
first-out (LIFO) queue

• Expands: uses more memory
when more space needed

• Contracts: uses less memory
when the space no longer
needed

The Stack

Chapter 6 <128> Digital Design and Computer Architecture: ARM® Edition © 2015

• Grows down (from higher to lower memory

addresses)

• Stack pointer: SP points to top of the stack

The Stack

Stack expands by 2 words

Chapter 6 <129> Digital Design and Computer Architecture: ARM® Edition © 2015

• Called functions must have no unintended
side effects

• But diffofsums overwrites 3 registers: R4,

R8, R9

ARM Assembly Code
; R4 = result

DIFFOFSUMS

ADD R8, R0, R1 ; R8 = f + g

ADD R9, R2, R3 ; R9 = h + i

SUB R4, R8, R9 ; result = (f + g) - (h + i)

MOV R0, R4 ; put return value in R0

MOV PC, LR ; return to caller

How Functions use the Stack

Chapter 6 <130> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly Code
; R2 = result

DIFFOFSUMS

SUB SP, SP, #12 ; make space on stack for 3 registers

STR R4, [SP, #-8] ; save R4 on stack

STR R8, [SP, #-4] ; save R8 on stack

STR R9, [SP] ; save R9 on stack

ADD R8, R0, R1 ; R8 = f + g

ADD R9, R2, R3 ; R9 = h + i

SUB R4, R8, R9 ; result = (f + g) - (h + i)

MOV R0, R4 ; put return value in R0

LDR R9, [SP] ; restore R9 from stack

LDR R8, [SP, #-4] ; restore R8 from stack

LDR R4, [SP, #-8] ; restore R4 from stack

ADD SP, SP, #12 ; deallocate stack space

MOV PC, LR ; return to caller

Storing Register Values on the Stack

Chapter 6 <131> Digital Design and Computer Architecture: ARM® Edition © 2015

Before call During call After call

The Stack during diffofsums Call

Chapter 6 <132> Digital Design and Computer Architecture: ARM® Edition © 2015

Preserved
Callee-Saved

Nonpreserved
Caller-Saved

R4-R11 R12

R14 (LR) R0-R3

R13 (SP) CPSR

stack above SP stack below SP

Registers

Chapter 6 <133> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly Code
; R2 = result

DIFFOFSUMS

STR R4, [SP, #-4]! ; save R4 on stack

ADD R8, R0, R1 ; R8 = f + g

ADD R9, R2, R3 ; R9 = h + i

SUB R4, R8, R9 ; result = (f + g) - (h + i)

MOV R0, R4 ; put return value in R0

LDR R4, [SP], #4 ; restore R4 from stack

MOV PC, LR ; return to caller

Storing Saved Registers only on Stack

Chapter 6 <134> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly Code
; R2 = result

DIFFOFSUMS

STR R4, [SP, #-4]! ; save R4 on stack

ADD R8, R0, R1 ; R8 = f + g

ADD R9, R2, R3 ; R9 = h + i

SUB R4, R8, R9 ; result = (f + g) - (h + i)

MOV R0, R4 ; put return value in R0

LDR R4, [SP], #4 ; restore R4 from stack

MOV PC, LR ; return to caller

Notice code optimization for expanding/contracting stack

Storing Saved Registers only on Stack

Chapter 6 <135> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly Code
STR LR, [SP, #-4]! ; store LR on stack

BL PROC2 ; call another function

...

LDR LR, [SP], #4 ; restore LR from stack

jr $ra ; return to caller

Nonleaf Function

Chapter 6 <136> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
int f1(int a, int b) {

int i, x;

x = (a + b)*(a − b);

for (i=0; i<a; i++)

x = x + f2(b+i);

return x;

}

int f2(int p) {

int r;

r = p + 5;

return r + p;

}

Nonleaf Function Example

Chapter 6 <137> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
int f1(int a, int b) {

int i, x;

x = (a + b)*(a − b);

for (i=0; i<a; i++)

x = x + f2(b+i);

return x;

}

int f2(int p) {

int r;

r = p + 5;

return r + p;

}

Nonleaf Function Example
ARM Assembly Code
; R0=a, R1=b, R4=i, R5=x

F1

PUSH {R4, R5, LR}

ADD R5, R0, R1

SUB R12, R0, R1

MUL R5, R5, R12

MOV R4, #0

FOR

CMP R4, R0

BGE RETURN

PUSH {R0, R1}

ADD R0, R1, R4

BL F2

ADD R5, R5, R0

POP {R0, R1}

ADD R4, R4, #1

B FOR

RETURN

MOV R0, R5

POP {R4, R5, LR}

MOV PC, LR

; R0=p, R4=r

F2

PUSH {R4}

ADD R4, R0, 5

ADD R0, R4, R0

POP {R4}

MOV PC, LR

Chapter 6 <138> Digital Design and Computer Architecture: ARM® Edition © 2015

Nonleaf Function Example
ARM Assembly Code
; R0=a, R1=b, R4=i, R5=x

F1

PUSH {R4, R5, LR} ; save regs

ADD R5, R0, R1 ; x = (a+b)

SUB R12, R0, R1 ; temp = (a-b)

MUL R5, R5, R12 ; x = x*temp

MOV R4, #0 ; i = 0

FOR

CMP R4, R0 ; i < a?

BGE RETURN ; no: exit loop

PUSH {R0, R1} ; save regs

ADD R0, R1, R4 ; arg is b+i

BL F2 ; call f2(b+i)

ADD R5, R5, R0 ; x = x+f2(b+i)

POP {R0, R1} ; restore regs

ADD R4, R4, #1 ; i++

B FOR ; repeat loop

RETURN

MOV R0, R5 ; return x

POP {R4, R5, LR} ; restore regs

MOV PC, LR ; return

; R0=p, R4=r

F2

PUSH {R4} ; save regs

ADD R4, R0, 5 ; r = p+5

ADD R0, R4, R0 ; return r+p

POP {R4} ; restore regs

MOV PC, LR ; return

Chapter 6 <139> Digital Design and Computer Architecture: ARM® Edition © 2015

Stack during Nonleaf Function

At beginning of f1 Just before calling f2 After calling f2

Chapter 6 <140> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
int factorial(int n) {

if (n <= 1)

return 1;

else

return (n * factorial(n-1));

}

Recursive Function Call

Chapter 6 <141> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly Code

0x94 FACTORIAL STR R0, [SP, #-4]! ;store R0 on stack

0x98 STR LR, [SP, #-4]! ;store LR on stack

0x9C CMP R0, #2 ;set flags with R0-2

0xA0 BHS ELSE ;if (r0>=2) branch to else

0xA4 MOV R0, #1 ; otherwise return 1

0xA8 ADD SP, SP, #8 ; restore SP 1

0xAC MOV PC, LR ; return

0xB0 ELSE SUB R0, R0, #1 ; n = n - 1

0xB4 BL FACTORIAL ; recursive call

0xB8 LDR LR, [SP], #4 ; restore LR

0xBC LDR R1, [SP], #4 ; restore R0 (n) into R1

0xC0 MUL R0, R1, R0 ; R0 = n*factorial(n-1)

0xC4 MOV PC, LR ; return

Recursive Function Call

Chapter 6 <142> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly Code

0x94 FACTORIAL STR R0, [SP, #-4]!

0x98 STR LR, [SP, #-4]!

0x9C CMP R0, #2

0xA0 BHS ELSE

0xA4 MOV R0, #1

0xA8 ADD SP, SP, #8

0xAC MOV PC, LR

0xB0 ELSE SUB R0, R0, #1

0xB4 BL FACTORIAL

0xB8 LDR LR, [SP], #4

0xBC LDR R1, [SP], #4

0xC0 MUL R0, R1, R0

0xC4 MOV PC, LR

Recursive Function Call

C Code

int factorial(int n) {

if (n <= 1)

return 1;

else

return (n * factorial(n-1));

}

Chapter 6 <143> Digital Design and Computer Architecture: ARM® Edition © 2015

Before call During call After call

Stack during Recursive Call

Chapter 6 <144> Digital Design and Computer Architecture: ARM® Edition © 2015

• Caller
– Puts arguments in R0-R3
– Saves any needed registers (LR, maybe R0-R3, R8-R12)
– Calls function: BL CALLEE
– Restores registers
– Looks for result in R0

• Callee
– Saves registers that might be disturbed (R4-R7)
– Performs function
– Puts result in R0
– Restores registers
– Returns: MOV PC, LR

Function Call Summary

Chapter 6 <145> Digital Design and Computer Architecture: ARM® Edition © 2015

How to Encode Instructions?

Chapter 6 <146> Digital Design and Computer Architecture: ARM® Edition © 2015

How to Encode Instructions?

• Design Principle 1: Regularity supports
design simplicity

– 32-bit data, 32-bit instructions

– For design simplicity, would prefer a single
instruction format but…

Chapter 6 <147> Digital Design and Computer Architecture: ARM® Edition © 2015

How to Encode Instructions?

• Design Principle 1: Regularity supports
design simplicity

– 32-bit data, 32-bit instructions

– For design simplicity, would prefer a single
instruction format but…

– Instructions have different needs

Chapter 6 <148> Digital Design and Computer Architecture: ARM® Edition © 2015

Good design demands good compromises

• Multiple instruction formats allow flexibility
- ADD, SUB: use 3 register operands

- LDR, STR: use 2 register operands and a constant

• Number of instruction formats kept small

- to adhere to design principles 1 and 3
(regularity supports design simplicity and
smaller is faster)

Design Principle 4

Chapter 6 <149> Digital Design and Computer Architecture: ARM® Edition © 2015

• Binary representation of instructions

• Computers only understand 1’s and 0’s

• 32-bit instructions
– Simplicity favors regularity: 32-bit data & instructions

• 3 instruction formats:
– Data-processing

– Memory

– Branch

Machine Language

Chapter 6 <150> Digital Design and Computer Architecture: ARM® Edition © 2015

• Data-processing

• Memory

• Branch

Instruction Formats

Chapter 6 <151> Digital Design and Computer Architecture: ARM® Edition © 2015

• Operands:
– Rn: first source register
– Src2: second source – register or immediate
– Rd: destination register

• Control fields:
– cond: specifies conditional execution
– op: the operation code or opcode
– funct: the function/operation to perform

Data-processing Instruction Format

Chapter 6 <152> Digital Design and Computer Architecture: ARM® Edition © 2015

• op = 002 for data-processing (DP) instructions

• funct is composed of cmd, I-bit, and S-bit

Data-processing Control Fields

Chapter 6 <153> Digital Design and Computer Architecture: ARM® Edition © 2015

• op = 002 for data-processing (DP) instructions

• funct is composed of cmd, I-bit, and S-bit
▪ cmd: specifies the specific data-processing instruction. For

example,
▪ cmd = 01002 for ADD
▪ cmd = 00102 for SUB

▪ I-bit
▪ I = 0: Src2 is a register
▪ I = 1: Src2 is an immediate

▪ S-bit: 1 if sets condition flags
▪ S = 0: SUB R0, R5, R7
▪ S = 1: ADDS R8, R2, R4 or CMP R3, #10

Data-processing Control Fields

Chapter 6 <154> Digital Design and Computer Architecture: ARM® Edition © 2015

• Src2 can be:

▪ Immediate

▪ Register

▪ Register-shifted register

Data-processing Src2 Variations

Chapter 6 <155> Digital Design and Computer Architecture: ARM® Edition © 2015

• Src2 can be:

▪ Immediate

▪ Register

▪ Register-shifted register

Data-processing Src2 Variations

Chapter 6 <156> Digital Design and Computer Architecture: ARM® Edition © 2015

• Immediate encoded as:
▪ imm8: 8-bit unsigned immediate

▪ rot: 4-bit rotation value

• 32-bit constant is: imm8 ROR (rot × 2)

Immediate Src2

Chapter 6 <157> Digital Design and Computer Architecture: ARM® Edition © 2015

• Immediate encoded as:
▪ imm8: 8-bit unsigned immediate

▪ rot: 4-bit rotation value

• 32-bit constant is: imm8 ROR (rot × 2)

• Example: imm8 = abcdefgh

Immediate Src2

rot 32-bit constant

0000 0000 0000 0000 0000 0000 0000 abcd efgh

0001 gh00 0000 0000 0000 0000 0000 00ab cdef

… …

1111 0000 0000 0000 0000 0000 00ab cdef gh00

Chapter 6 <158> Digital Design and Computer Architecture: ARM® Edition © 2015

• Immediate encoded as:
▪ imm8: 8-bit unsigned immediate

▪ rot: 4-bit rotation value

• 32-bit constant is: imm8 ROR (rot × 2)

• Example: imm8 = abcdefgh

Immediate Src2

rot 32-bit constant

0000 0000 0000 0000 0000 0000 0000 abcd efgh

0001 gh00 0000 0000 0000 0000 0000 00ab cdef

… …

1111 0000 0000 0000 0000 0000 00ab cdef gh00

ROR by X = ROL by (32-X)
Ex: ROR by 30 = ROL by 2

Chapter 6 <159> Digital Design and Computer Architecture: ARM® Edition © 2015

ADD R0, R1, #42

• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 01002 (4) for ADD
• Src2 is an immediate so I = 1
• Rd = 0, Rn = 1
• imm8 = 42, rot = 0

DP Instruction with Immediate Src2

Chapter 6 <160> Digital Design and Computer Architecture: ARM® Edition © 2015

ADD R0, R1, #42

• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 01002 (4) for ADD
• Src2 is an immediate so I = 1
• Rd = 0, Rn = 1
• imm8 = 42, rot = 0

DP Instruction with Immediate Src2

Chapter 6 <161> Digital Design and Computer Architecture: ARM® Edition © 2015

ADD R0, R1, #42

• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 01002 (4) for ADD
• Src2 is an immediate so I = 1
• Rd = 0, Rn = 1
• imm8 = 42, rot = 0

DP Instruction with Immediate Src2

0xE281002A

Chapter 6 <162> Digital Design and Computer Architecture: ARM® Edition © 2015

SUB R2, R3, #0xFF0

• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 00102 (2) for SUB
• Src2 is an immediate so I=1
• Rd = 2, Rn = 3
• imm8 = 0xFF
• imm8 must be rotated right by 28 to produce 0xFF0, so rot = 14

DP Instruction with Immediate Src2

Chapter 6 <163> Digital Design and Computer Architecture: ARM® Edition © 2015

SUB R2, R3, #0xFF0

• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 00102 (2) for SUB
• Src2 is an immediate so I=1
• Rd = 2, Rn = 3
• imm8 = 0xFF
• imm8 must be rotated right by 28 to produce 0xFF0, so rot = 14

DP Instruction with Immediate Src2

ROR by 28 =
ROL by (32-28) = 4

Chapter 6 <164> Digital Design and Computer Architecture: ARM® Edition © 2015

SUB R2, R3, #0xFF0

• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 00102 (2) for SUB
• Src2 is an immediate so I=1
• Rd = 2, Rn = 3
• imm8 = 0xFF
• imm8 must be rotated right by 28 to produce 0xFF0, so rot = 14

DP Instruction with Immediate Src2

ROR by 28 =
ROL by (32-28) = 4

Chapter 6 <165> Digital Design and Computer Architecture: ARM® Edition © 2015

SUB R2, R3, #0xFF0

• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 00102 (2) for SUB
• Src2 is an immediate so I=1
• Rd = 2, Rn = 3
• imm8 = 0xFF
• imm8 must be rotated right by 28 to produce 0xFF0, so rot = 14

DP Instruction with Immediate Src2

0xE2432EFF

ROR by 28 =
ROL by (32-28) = 4

Chapter 6 <166> Digital Design and Computer Architecture: ARM® Edition © 2015

DP Instruction with Register Src2

• Src2 can be:

▪ Immediate

▪ Register

▪ Register-shifted register

Chapter 6 <167> Digital Design and Computer Architecture: ARM® Edition © 2015

DP Instruction with Register Src2

• Rm: the second source operand

• shamt5: the amount Rm is shifted

• sh: the type of shift (i.e., >>, <<, >>>, ROR)

Chapter 6 <168> Digital Design and Computer Architecture: ARM® Edition © 2015

DP Instruction with Register Src2

• Rm: the second source operand

• shamt5: the amount rm is shifted

• sh: the type of shift (i.e., >>, <<, >>>, ROR)

First, consider unshifted versions of Rm (shamt5=0, sh=0)

Chapter 6 <169> Digital Design and Computer Architecture: ARM® Edition © 2015

ADD R5, R6, R7

• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 01002 (4) for ADD
• Src2 is a register so I=0
• Rd = 5, Rn = 6, Rm = 7
• shamt = 0, sh = 0

DP Instruction with Register Src2

Chapter 6 <170> Digital Design and Computer Architecture: ARM® Edition © 2015

ADD R5, R6, R7

• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 01002 (4) for ADD
• Src2 is a register so I=0
• Rd = 5, Rn = 6, Rm = 7
• shamt = 0, sh = 0

DP Instruction with Register Src2

Chapter 6 <171> Digital Design and Computer Architecture: ARM® Edition © 2015

ADD R5, R6, R7

• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 01002 (4) for ADD
• Src2 is a register so I=0
• Rd = 5, Rn = 6, Rm = 7
• shamt = 0, sh = 0

DP Instruction with Register Src2

0xE0865007

Chapter 6 <172> Digital Design and Computer Architecture: ARM® Edition © 2015

DP Instruction with Register Src2

• Rm: the second source operand

• shamt5: the amount Rm is shifted

• sh: the type of shift

Shift Type sh

LSL 002

LSR 012

ASR 102

ROR 112Now, consider shifted versions.

Chapter 6 <173> Digital Design and Computer Architecture: ARM® Edition © 2015

DP Instruction with Register Src2
ORR R9, R5, R3, LSR #2

• Operation: R9 = R5 OR (R3 >> 2)
• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 11002 (12) for ORR
• Src2 is a register so I=0
• Rd = 9, Rn = 5, Rm = 3
• shamt5 = 2, sh = 012 (LSR)

1110 00 0 1100 0 0101 1001 00010 01 0 0011
0xE1859123

Chapter 6 <174> Digital Design and Computer Architecture: ARM® Edition © 2015

DP with Register-shifted Reg. Src2

• Src2 can be:

▪ Immediate

▪ Register

▪ Register-shifted register

Chapter 6 <175> Digital Design and Computer Architecture: ARM® Edition © 2015

DP with Register-shifted Reg. Src2
EOR R8, R9, R10, ROR R12

• Operation: R8 = R9 XOR (R10 ROR R12)
• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 00012 (1) for EOR
• Src2 is a register so I=0
• Rd = 8, Rn = 9, Rm = 10, Rs = 12
• sh = 112 (ROR)

1110 00 0 0001 0 1001 1000 1100 0 11 1 1010
0xE0298C7A

Chapter 6 <176> Digital Design and Computer Architecture: ARM® Edition © 2015

Shift Instructions Encoding

Shift Type sh

LSL 002

LSR 012

ASR 102

ROR 112

Chapter 6 <177> Digital Design and Computer Architecture: ARM® Edition © 2015

Shift Instructions: Immediate shamt
ROR R1, R2, #23

• Operation: R1 = R2 ROR 23
• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 11012 (13) for all shifts (LSL, LSR, ASR, and ROR)
• Src2 is an immediate-shifted register so I=0
• Rd = 1, Rn = 0, Rm = 2
• shamt5 = 23, sh = 112 (ROR)

1110 00 0 1101 0 0000 0001 10111 11 0 0010
0xE1A01BE2

Chapter 6 <178> Digital Design and Computer Architecture: ARM® Edition © 2015

Shift Instructions: Immediate shamt
ROR R1, R2, #23

• Operation: R1 = R2 ROR 23
• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 11012 (13) for all shifts (LSL, LSR, ASR, and ROR)
• Src2 is an immediate-shifted register so I=0
• Rd = 1, Rn = 0, Rm = 2
• shamt5 = 23, sh = 112 (ROR) Uses (immediate-

shifted) register
Src2 encoding

1110 00 0 1101 0 0000 0001 10111 11 0 0010
0xE1A01BE2

Chapter 6 <179> Digital Design and Computer Architecture: ARM® Edition © 2015

Shift Instructions: Register shamt
ASR R5, R6, R10

• Operation: R5 = R6 >>> R107:0

• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 11012 (13) for all shifts (LSL, LSR, ASR, and ROR)
• Src2 is a register so I=0
• Rd = 5, Rn = 0, Rm = 6, Rs = 10
• sh = 102 (ASR)

1110 00 0 1101 0 0000 0101 1010 0 10 1 0110
0xE1A05A56

Chapter 6 <180> Digital Design and Computer Architecture: ARM® Edition © 2015

Shift Instructions: Register shamt
ASR R5, R6, R10

• Operation: R5 = R6 >>> R107:0

• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 11012 (13) for all shifts (LSL, LSR, ASR, and ROR)
• Src2 is a register so I=0
• Rd = 5, Rn = 0, Rm = 6, Rs = 10
• sh = 102 (ASR)

1110 00 0 1101 0 0000 0101 1010 0 10 1 0110
0xE1A05A56

Uses register-
shifted register
Src2 encoding

Chapter 6 <181> Digital Design and Computer Architecture: ARM® Edition © 2015

• Src2 can be:

▪ Immediate

▪ Register

▪ Register-shifted register

Review: Data-processing Format

Chapter 6 <182> Digital Design and Computer Architecture: ARM® Edition © 2015

• Data-processing

• Memory

• Branch

Instruction Formats

Chapter 6 <183> Digital Design and Computer Architecture: ARM® Edition © 2015

Encodes: LDR, STR, LDRB, STRB
• op = 012

• Rn = base register
• Rd = destination (load), source (store)
• Src2 = offset
• funct = 6 control bits

Memory Instruction Format

Chapter 6 <184> Digital Design and Computer Architecture: ARM® Edition © 2015

Recall: Address = Base Address + Offset
Example: LDR R1, [R2, #4]

Base Address = R2, Offset = 4

Address = (R2 + 4)

• Base address always in a register

• The offset can be:
▪ an immediate

▪ a register

▪ or a scaled (shifted) register

Offset Options

Chapter 6 <185> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly Memory Address
LDR R0, [R3, #4] R3 + 4

LDR R0, [R5, #-16] R5 – 16

LDR R1, [R6, R7] R6 + R7

LDR R2, [R8, -R9] R8 – R9

LDR R3, [R10, R11, LSL #2] R10 + (R11 << 2)

LDR R4, [R1, -R12, ASR #4] R1 – (R12 >>> 4)

LDR R0, [R9] R9

Offset Examples

Chapter 6 <186> Digital Design and Computer Architecture: ARM® Edition © 2015

Encodes: LDR, STR, LDRB, STRB
• op = 012

• Rn = base register
• Rd = destination (load), source (store)
• Src2 = offset: register (optionally shifted) or immediate
• funct = 6 control bits

Memory Instruction Format

Chapter 6 <187> Digital Design and Computer Architecture: ARM® Edition © 2015

Mode Address Base Reg. Update

Offset Base register ± Offset No change

Preindex Base register ± Offset Base register ± Offset

Postindex Base register Base register ± Offset

Examples
• Offset: LDR R1, [R2, #4] ; R1 = mem[R2+4]

• Preindex: LDR R3, [R5, #16]! ; R3 = mem[R5+16]

; R5 = R5 + 16

• Postindex: LDR R8, [R1], #8 ; R8 = mem[R1]

; R1 = R1 + 8

Indexing Modes

Chapter 6 <188> Digital Design and Computer Architecture: ARM® Edition © 2015

• funct:
▪ I: Immediate bar
▪ P: Preindex
▪ U: Add
▪ B: Byte
▪ W: Writeback
▪ L: Load

Memory Instruction Format

Chapter 6 <189> Digital Design and Computer Architecture: ARM® Edition © 2015

Memory Format funct Encodings

Type of Operation
L B Instruction

0 0 STR

0 1 STRB

1 0 LDR

1 1 LDRB

Chapter 6 <190> Digital Design and Computer Architecture: ARM® Edition © 2015

P W Indexing Mode

0 1 Not supported

0 0 Postindex

1 0 Offset

1 1 Preindex

Memory Format funct Encodings

Type of Operation Indexing Mode
L B Instruction

0 0 STR

0 1 STRB

1 0 LDR

1 1 LDRB

Chapter 6 <191> Digital Design and Computer Architecture: ARM® Edition © 2015

P W Indexing Mode

0 1 Not supported

0 0 Postindex

1 0 Offset

1 1 Preindex

Memory Format funct Encodings

Type of Operation

Value I U

0 Immediate offset in Src2 Subtract offset from base

1 Register offset in Src2 Add offset to base

Add/Subtract Immediate/Register Offset

Indexing Mode
L B Instruction

0 0 STR

0 1 STRB

1 0 LDR

1 1 LDRB

Chapter 6 <192> Digital Design and Computer Architecture: ARM® Edition © 2015

Encodes: LDR, STR, LDRB, STRB
• op = 012

• Rn = base register
• Rd = destination (load), source (store)
• Src2 = offset: immediate or register (optionally shifted)
• funct = I (immediate bar), P (preindex), U (add),

B (byte), W (writeback), L (load)

Memory Instruction Format

Chapter 6 <193> Digital Design and Computer Architecture: ARM® Edition © 2015

Memory Instr. with Immediate Src2
STR R11, [R5], #-26

• Operation: mem[R5] <= R11; R5 = R5 - 26
• cond = 11102 (14) for unconditional execution
• op = 012 (1) for memory instruction
• funct = 00000002 (0)

I = 0 (immediate offset), P = 0 (postindex),
U = 0 (subtract), B = 0 (store word), W = 0 (postindex),
L = 0 (store)

• Rd = 11, Rn = 5, imm12 = 26

Chapter 6 <194> Digital Design and Computer Architecture: ARM® Edition © 2015

Memory Instr. with Immediate Src2
STR R11, [R5], #-26

• Operation: mem[R5] <= R11; R5 = R5 - 26
• cond = 11102 (14) for unconditional execution
• op = 012 (1) for memory instruction
• funct = 00000002 (0)

I = 0 (immediate offset), P = 0 (postindex),
U = 0 (subtract), B = 0 (store word), W = 0 (postindex),
L = 0 (store)

• Rd = 11, Rn = 5, imm12 = 26

Chapter 6 <195> Digital Design and Computer Architecture: ARM® Edition © 2015

Memory Instr. with Register Src2
LDR R3, [R4, R5]

• Operation: R3 <= mem[R4 + R5]
• cond = 11102 (14) for unconditional execution
• op = 012 (1) for memory instruction
• funct = 1110012 (57)

I = 1 (register offset), P = 1 (offset indexing),
U = 1 (add), B = 0 (load word), W = 0 (offset indexing),
L = 1 (load)

• Rd = 3, Rn = 4, Rm = 5 (shamt5 = 0, sh = 0)

1110 01 111001 0100 0011 00000 00 0 0101 = 0xE7943005

Chapter 6 <196> Digital Design and Computer Architecture: ARM® Edition © 2015

Memory Instr. with Scaled Reg. Src2
STR R9, [R1, R3, LSL #2]

• Operation: mem[R1 + (R3 << 2)] <= R9
• cond = 11102 (14) for unconditional execution
• op = 012 (1) for memory instruction
• funct = 1110002 (0)

I = 1 (register offset), P = 1 (offset indexing),
U = 1 (add), B = 0 (store word), W = 0 (offset indexing),
L = 0 (store)

• Rd = 9, Rn = 1, Rm = 3, shamt = 2, sh = 002 (LSL)

1110 01 111000 0001 1001 00010 00 0 0011 = 0xE7819103

Chapter 6 <197> Digital Design and Computer Architecture: ARM® Edition © 2015

Encodes: LDR, STR, LDRB, STRB
• op = 012

• Rn = base register
• Rd = destination (load), source (store)
• Src2 = offset: register (optionally shifted) or immediate
• funct = I (immediate bar), P (preindex), U (add),

B (byte), W (writeback), L (load)

Review: Memory Instruction Format

Chapter 6 <198> Digital Design and Computer Architecture: ARM® Edition © 2015

• Data-processing

• Memory

• Branch

Instruction Formats

Chapter 6 <199> Digital Design and Computer Architecture: ARM® Edition © 2015

Encodes B and BL

• op = 102

• imm24: 24-bit immediate

• funct = 1L2: L = 1 for BL, L = 0 for B

Branch Instruction Format

Chapter 6 <200> Digital Design and Computer Architecture: ARM® Edition © 2015

• Branch Target Address (BTA): Next PC when
branch taken

• BTA is relative to current PC + 8

• imm24 encodes BTA

• imm24 = # of words BTA is away from PC+8

Encoding Branch Target Address

Chapter 6 <201> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM assembly code

0xA0 BLT THERE

0xA4 ADD R0, R1, R2

0xA8 SUB R0, R0, R9

0xAC ADD SP, SP, #8

0xB0 MOV PC, LR

0xB4 THERE SUB R0, R0, #1

0xB8 BL TEST

• PC = 0xA0
• PC + 8 = 0xA8
• THERE label is 3

instructions past
PC+8

• So, imm24 = 3

PC

PC+8

BTA

Branch Instruction: Example 1

Chapter 6 <202> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM assembly code

0xA0 BLT THERE

0xA4 ADD R0, R1, R2

0xA8 SUB R0, R0, R9

0xAC ADD SP, SP, #8

0xB0 MOV PC, LR

0xB4 THERE SUB R0, R0, #1

0xB8 BL TEST

• PC = 0xA0
• PC + 8 = 0xA8
• THERE label is 3

instructions past
PC+8

• So, imm24 = 3

PC

PC+8

BTA

Branch Instruction: Example 1

Chapter 6 <203> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM assembly code

0xA0 BLT THERE

0xA4 ADD R0, R1, R2

0xA8 SUB R0, R0, R9

0xAC ADD SP, SP, #8

0xB0 MOV PC, LR

0xB4 THERE SUB R0, R0, #1

0xB8 BL TEST

• PC = 0xA0
• PC + 8 = 0xA8
• THERE label is 3

instructions past
PC+8

• So, imm24 = 3

PC

PC+8

BTA

Branch Instruction: Example 1

0xBA000003

Chapter 6 <204> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM assembly code
0x8040 TEST LDRB R5, [R0, R3]

0x8044 STRB R5, [R1, R3]

0x8048 ADD R3, R3, #1

0x8044 MOV PC, LR

0x8050 BL TEST

0x8054 LDR R3, [R1], #4

0x8058 SUB R4, R3, #9

• PC = 0x8050
• PC + 8 = 0x8058
• TEST label is 6

instructions before
PC+8

• So, imm24 = -6

Branch Instruction: Example 2

PC

PC+8

BTA

Chapter 6 <205> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM assembly code
0x8040 TEST LDRB R5, [R0, R3]

0x8044 STRB R5, [R1, R3]

0x8048 ADD R3, R3, #1

0x8044 MOV PC, LR

0x8050 BL TEST

0x8054 LDR R3, [R1], #4

0x8058 SUB R4, R3, #9

• PC = 0x8050
• PC + 8 = 0x8058
• TEST label is 6

instructions before
PC+8

• So, imm24 = -6

Branch Instruction: Example 2

PC

PC+8

BTA

Chapter 6 <206> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM assembly code
0x8040 TEST LDRB R5, [R0, R3]

0x8044 STRB R5, [R1, R3]

0x8048 ADD R3, R3, #1

0x8044 MOV PC, LR

0x8050 BL TEST

0x8054 LDR R3, [R1], #4

0x8058 SUB R4, R3, #9

• PC = 0x8050
• PC + 8 = 0x8058
• TEST label is 6

instructions before
PC+8

• So, imm24 = -6

Branch Instruction: Example 2

PC

PC+8

BTA

0xEBFFFFFA

Chapter 6 <207> Digital Design and Computer Architecture: ARM® Edition © 2015

Review: Instruction Formats

Branch

Chapter 6 <208> Digital Design and Computer Architecture: ARM® Edition © 2015

Encode in cond bits of machine instruction
For example,

ANDEQ R1, R2, R3 (cond = 0000)

ORRMI R4, R5, #0xF (cond = 0100)

SUBLT R9, R3, R8 (cond = 1011)

Conditional Execution

Chapter 6 <209> Digital Design and Computer Architecture: ARM® Edition © 2015

cond Mnemonic Name CondEx

0000 EQ Equal 𝑍

0001 NE Not equal ҧ𝑍

0010 CS / HS Carry set / Unsigned higher or same 𝐶

0011 CC / LO Carry clear / Unsigned lower ҧ𝐶

0100 MI Minus / Negative 𝑁

0101 PL Plus / Positive of zero ഥ𝑁

0110 VS Overflow / Overflow set 𝑉

0111 VC No overflow / Overflow clear ത𝑉

1000 HI Unsigned higher ҧ𝑍𝐶

1001 LS Unsigned lower or same 𝑍 𝑂𝑅 ҧ𝐶

1010 GE Signed greater than or equal 𝑁⊕𝑉

1011 LT Signed less than 𝑁⊕𝑉

1100 GT Signed greater than ҧ𝑍(𝑁 ⊕ 𝑉)

1101 LE Signed less than or equal 𝑍 𝑂𝑅 (𝑁⊕ 𝑉)

1110 AL (or none) Always / unconditional ignored

Review: Condition Mnemonics

Chapter 6 <210> Digital Design and Computer Architecture: ARM® Edition © 2015

cond op cmd rn rd

Field Values

31:28 27:26 24:21 19:16 15:12

0

I

25

S

20

14 0 2 1 2 1

shshamt5

0

rm

411:7 6:5 3:0

0 0 3

00 0 4 0 5 4 00 0 6

cond op cmd rn rd

Machine Code

31:28 27:26 24:21 19:16 15:12

00

I

25

S

20

1110 0 0010 0 0010 0001

shshamt5

0

rm

411:7 6:5 3:0

00000 00 0011

0000 0 0100 0 0101 0100 0 0110

Assembly Code

00000 0000

(0xE0421003)

(0x00854006)

04 0 12 0 5 8 00 0 6

011 0 1 0 5 9 00 0 6

000100 0 1100 0 0101 1000 000000 00 0110

1011 0 0001 0 0101 1001 0 011000000 0000

(0x41858006)

(0xB0259006)

02 0 0 0 5 7 00 0 6

000010 0 0000 0 0101 0111 000000 00 0110 (0x20057006)

SUBS R1, R2, R3

ADDEQ R4, R5, R6

ORRMI R8, R5, R6

EORLT R9, R5, R6

ANDHS R7, R5, R6

Conditional Execution: Machine Code

Chapter 6 <211> Digital Design and Computer Architecture: ARM® Edition © 2015

• Start with op: tells how to parse rest
op = 00 (Data-processing)

op = 01 (Memory)

op = 10 (Branch)

• I-bit: tells how to parse Src2

• Data-processing instructions:
If I-bit is 0, bit 4 determines if Src2 is a register (bit 4
= 0) or a register-shifted register (bit 4 = 1)

• Memory instructions:
Examine funct bits for indexing mode, instruction,
and add or subtract offset

Interpreting Machine Code

Chapter 6 <212> Digital Design and Computer Architecture: ARM® Edition © 2015

0xE0475001

Interpreting Machine Code: Example 1

Chapter 6 <213> Digital Design and Computer Architecture: ARM® Edition © 2015

0xE0475001
• Start with op: 002, so data-processing instruction

Interpreting Machine Code: Example 1

Chapter 6 <214> Digital Design and Computer Architecture: ARM® Edition © 2015

0xE0475001
• Start with op: 002, so data-processing instruction

• I-bit: 0, so Src2 is a register

• bit 4: 0, so Src2 is a register (optionally shifted by shamt5)

Interpreting Machine Code: Example 1

Chapter 6 <215> Digital Design and Computer Architecture: ARM® Edition © 2015

0xE0475001
• Start with op: 002, so data-processing instruction

• I-bit: 0, so Src2 is a register

• bit 4: 0, so Src2 is a register (optionally shifted by shamt5)

• cmd: 00102 (2), so SUB

• Rn=7, Rd=5, Rm=1, shamt5 = 0, sh = 0

• So, instruction is: SUB R5,R7,R1

Interpreting Machine Code: Example 1

Chapter 6 <216> Digital Design and Computer Architecture: ARM® Edition © 2015

0xE5949010

Interpreting Machine Code: Example 2

Chapter 6 <217> Digital Design and Computer Architecture: ARM® Edition © 2015

0xE5949010
• Start with op: 012, so memory instruction

• funct: B=0, L=1, so LDR; P=1, W=0, so offset indexing;

I=0, so immediate offset, U=1, so add offset

• Rn=4, Rd=9, imm12 = 16

• So, instruction is: LDR R9,[R4,#16]

Interpreting Machine Code: Example 2

Chapter 6 <218> Digital Design and Computer Architecture: ARM® Edition © 2015

How do we address operands?
• Register

• Immediate

• Base

• PC-Relative

Addressing Modes

Chapter 6 <219> Digital Design and Computer Architecture: ARM® Edition © 2015

How do we address operands?
• Register Only

• Immediate

• Base

• PC-Relative

Addressing Modes

Chapter 6 <220> Digital Design and Computer Architecture: ARM® Edition © 2015

• Source and destination operands found in
registers

• Used by data-processing instructions

• Three submodes:

–Register-only

– Immediate-shifted register

–Register-shifted register

Register Addressing

Chapter 6 <221> Digital Design and Computer Architecture: ARM® Edition © 2015

• Register-only

Example: ADD R0, R2, R7

• Immediate-shifted register

Example: ORR R5, R1, R3, LSL #1

• Register-shifted register

Example: SUB R12, R9, R0, ASR R1

Register Addressing Examples

Chapter 6 <222> Digital Design and Computer Architecture: ARM® Edition © 2015

How do we address operands?
• Register Only

• Immediate

• Base

• PC-Relative

Addressing Modes

Chapter 6 <223> Digital Design and Computer Architecture: ARM® Edition © 2015

• Source and destination operands found in
registers and immediates

Example: ADD R9, R1, #14

• Uses data-processing format with I=1

• Immediate is encoded as

– 8-bit immediate (imm8)

– 4-bit rotation (rot)

• 32-bit immediate = imm8 ROR (rot x 2)

Immediate Addressing

Chapter 6 <224> Digital Design and Computer Architecture: ARM® Edition © 2015

How do we address operands?
• Register Only

• Immediate

• Base

• PC-Relative

Addressing Modes

Chapter 6 <225> Digital Design and Computer Architecture: ARM® Edition © 2015

• Address of operand is:

base register + offset

• Offset can be a:

–12-bit Immediate

–Register

– Immediate-shifted Register

Base Addressing

Chapter 6 <226> Digital Design and Computer Architecture: ARM® Edition © 2015

• Immediate offset

Example: LDR R0, [R8, #-11]

(R0 = mem[R8 - 11])

• Register offset

Example: LDR R1, [R7, R9]

(R1 = mem[R7 + R9])

• Immediate-shifted register offset

Example: STR R5, [R3, R2, LSL #4]

(R5 = mem[R3 + (R2 << 4)])

Base Addressing Examples

Chapter 6 <227> Digital Design and Computer Architecture: ARM® Edition © 2015

How do we address operands?
• Register Only

• Immediate

• Base

• PC-Relative

Addressing Modes

Chapter 6 <228> Digital Design and Computer Architecture: ARM® Edition © 2015

• Used for branches

• Branch instruction format:
– Operands are PC and a signed 24-bit immediate (imm24)

– Changes the PC

– New PC is relative to the old PC

– imm24 indicates the number of words away from PC+8

• PC = (PC+8) + (SignExtended(imm24) x 4)

PC-Relative Addressing

Chapter 6 <229> Digital Design and Computer Architecture: ARM® Edition © 2015

• 32-bit instructions & data stored in memory

• Sequence of instructions: only difference
between two applications

• To run a new program:
– No rewiring required

– Simply store new program in memory

• Program Execution:
– Processor fetches (reads) instructions from memory

in sequence

– Processor performs the specified operation

Power of the Stored Program

Chapter 6 <230> Digital Design and Computer Architecture: ARM® Edition © 2015

Program Counter
(PC): keeps track of
current instruction

ADD R3, R1, R2

Machine CodeAssembly Code

MOV R1, #100

MOV R2, #69

STR R3, [R1]

0xE3A01064

0xE3A02045

0xE2813002

0xE5913000

Address Instructions

0000000C E 5 9 1 3 0 0 0

E 2 8 1 3 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

00000008

00000004

00000000

Stored Program

Main Memory

PC

The Stored Program

Chapter 6 <231> Digital Design and Computer Architecture: ARM® Edition © 2015

How to implement the ARM Instruction Set

Architecture in Hardware

Microarchitecture

Up Next

