
Chapter 7 <1> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 7

Digital Design and Computer Architecture: ARM® Edition

Sarah L. Harris and David Money Harris

Chapter 7 <2> Digital Design and Computer Architecture: ARM® Edition © 2015

Chapter 7 :: Topics

• Introduction

• Performance Analysis

• Single-Cycle Processor

• Multicycle Processor

• Pipelined Processor

• Advanced Microarchitecture

Chapter 7 <3> Digital Design and Computer Architecture: ARM® Edition © 2015

• Microarchitecture: how to
implement an architecture
in hardware

• Processor:
– Datapath: functional blocks

– Control: control signals

Introduction

Chapter 7 <4> Digital Design and Computer Architecture: ARM® Edition © 2015

• Multiple implementations for a single
architecture:
– Single-cycle: Each instruction executes in a

single cycle

– Multicycle: Each instruction is broken up into
series of shorter steps

– Pipelined: Each instruction broken up into series
of steps & multiple instructions execute at once

Microarchitecture

Chapter 7 <5> Digital Design and Computer Architecture: ARM® Edition © 2015

• Program execution time

Execution Time = (#instructions)(cycles/instruction)(seconds/cycle)

• Definitions:
– CPI: Cycles/instruction
– clock period: seconds/cycle
– IPC: instructions/cycle = IPC

• Challenge is to satisfy constraints of:
– Cost
– Power
– Performance

Processor Performance

Chapter 7 <6> Digital Design and Computer Architecture: ARM® Edition © 2015

• Consider subset of ARM instructions:
– Data-processing instructions:

• ADD, SUB, AND, ORR

• with register and immediate Src2, but no shifts

– Memory instructions:
• LDR, STR

• with positive immediate offset

– Branch instructions:
• B

ARM Processor

Chapter 7 <7> Digital Design and Computer Architecture: ARM® Edition © 2015

Determines everything about a processor:
– Architectural state:

• 16 registers (including PC)

• Status register

– Memory

Architectural State Elements

Chapter 7 <8> Digital Design and Computer Architecture: ARM® Edition © 2015

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WE

PCPC'

CLK

R15

CLK

Status

32 32 32 32

32

32

32

32
32

32

32

4

4

4

4 4

ARM Architectural State Elements

Chapter 7 <9> Digital Design and Computer Architecture: ARM® Edition © 2015

• Datapath

• Control

Single-Cycle ARM Processor

Chapter 7 <10> Digital Design and Computer Architecture: ARM® Edition © 2015

• Datapath

• Control

Single-Cycle ARM Processor

Chapter 7 <11> Digital Design and Computer Architecture: ARM® Edition © 2015

• Datapath: start with LDR instruction

• Example: LDR R1, [R2, #5]

LDR Rd, [Rn, imm12]

Single-Cycle ARM Processor

Chapter 7 <12> Digital Design and Computer Architecture: ARM® Edition © 2015

STEP 1: Fetch instruction

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WE
PCPC'

In
s
tr

CLK

R15

Single-Cycle Datapath: LDR fetch

Chapter 7 <13> Digital Design and Computer Architecture: ARM® Edition © 2015

STEP 2: Read source operands from RF

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WE
PCPC'

In
s
tr 19:16

CLK

R15

RA1

Single-Cycle Datapath: LDR Reg Read

LDR Rd, [Rn, imm12]

Chapter 7 <14> Digital Design and Computer Architecture: ARM® Edition © 2015

STEP 3: Extend the immediate

ExtImm

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WE
PCPC'

In
s
tr 19:16

15:12

11:0

CLK

R15

RA1

Extend

Single-Cycle Datapath: LDR Immed.

LDR Rd, [Rn, imm12]

Chapter 7 <15> Digital Design and Computer Architecture: ARM® Edition © 2015

STEP 4: Compute the memory address

ExtImm

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WE
PCPC'

In
s
tr 19:16

15:12

11:0

SrcB

ALUResult

SrcA

CLK

A
LU

R15

RA1

Extend

ALUControl
00

Single-Cycle Datapath: LDR Address

LDR Rd, [Rn, imm12]

Chapter 7 <16> Digital Design and Computer Architecture: ARM® Edition © 2015

LDR Rd, [Rn, imm12]

STEP 5: Read data from memory and write it
back to register file

ExtImm

CLK

A RD

Instruction

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WE
PCPC'

In
s
tr 19:16

15:12

11:0

SrcB

ALUResult ReadData

SrcA

CLK

A
LU

R15

RA1

Extend

 RegWrite ALUControl
1 00

Single-Cycle Datapath: LDR Mem Read

Chapter 7 <17> Digital Design and Computer Architecture: ARM® Edition © 2015

STEP 6: Determine address of next instruction

ExtImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WE
PCPC'

In
s
tr 19:16

15:12

11:0

SrcB

ALUResult ReadData

SrcA

PCPlus4

CLK

A
LU

R15

RA1

Extend

 RegWrite ALUControl
1 00

o

Single-Cycle Datapath: PC Increment

Chapter 7 <18> Digital Design and Computer Architecture: ARM® Edition © 2015

PC can be source/destination of instruction

ExtImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WE
PC1

0

PC'

In
s
tr 19:16

15:12

11:0

SrcB

ALUResult ReadData

SrcA

PCPlus4

CLK

A
LU

PCPlus8
R15+

4

RA1

Extend

 RegWritePCSrc ALUControl
1 1 00

Single-Cycle Datapath: Access to PC

Chapter 7 <19> Digital Design and Computer Architecture: ARM® Edition © 2015

PC can be source/destination of instruction

• Source: R15 must be available in Register File
– PC is read as the current PC plus 8

ExtImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WE
PC1

0

PC'

In
s
tr 19:16

15:12

11:0

SrcB

ALUResult ReadData

SrcA

PCPlus4

CLK

A
LU

PCPlus8
R15+

4

RA1

Extend

 RegWritePCSrc ALUControl
1 1 00

Single-Cycle Datapath: Access to PC

Chapter 7 <20> Digital Design and Computer Architecture: ARM® Edition © 2015

PC can be source/destination of instruction

• Source: R15 must be available in Register File
– PC is read as the current PC plus 8

• Destination: Be able to write result to PC

ExtImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WE
PC1

0

PC'

In
s
tr 19:16

15:12

11:0

SrcB

ALUResult ReadData

SrcA

PCPlus4

CLK

A
LU

PCPlus8
R15+

4

RA1

Extend

 RegWritePCSrc ALUControl
1 1 00

Single-Cycle Datapath: Access to PC

Chapter 7 <21> Digital Design and Computer Architecture: ARM® Edition © 2015

Expand datapath to handle STR:
• Write data in Rd to memory

ExtImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WE
PC1

0

PC'

In
s
tr 19:16

15:12

11:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

CLK

A
LU

PCPlus8
R15+

4

RA1

RA2

Extend

 RegWritePCSrc

MemWriteALUControl
0 0 00 1

Single-Cycle Datapath: STR

STR Rd, [Rn, imm12]

Chapter 7 <22> Digital Design and Computer Architecture: ARM® Edition © 2015

With immediate Src2:
• Read from Rn and Imm8 (ImmSrc chooses the zero-extended Imm8

instead of Imm12)

• Write ALUResult to register file

• Write to Rd

Single-Cycle Datapath: Data-processing

ADD Rd, Rn, imm8

Chapter 7 <23> Digital Design and Computer Architecture: ARM® Edition © 2015

With immediate Src2:
• Read from Rn and Imm8 (ImmSrc chooses the zero-extended Imm8

instead of Imm12)

• Write ALUResult to register file

• Write to Rd

ExtImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WE

1

0

PC1

0

PC'

In
s
tr 19:16

15:12

11:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

A
L

U
F
la

g
s

CLK

A
LU

PCPlus8
R15+

4

RA1

RA2

Extend

 RegWritePCSrc ImmSrc

MemWrite MemtoRegALUControl
0 1 0 varies 0 0

Single-Cycle Datapath: Data-processing

ADD Rd, Rn, imm8

Chapter 7 <24> Digital Design and Computer Architecture: ARM® Edition © 2015

With register Src2:
• Read from Rn and Rm (instead of Imm8)

• Write ALUResult to register file

• Write to Rd

Single-Cycle Datapath: Data-processing

ADD Rd, Rn, Rm

Chapter 7 <25> Digital Design and Computer Architecture: ARM® Edition © 2015

With register Src2:
• Read from Rn and Rm (instead of Imm8)

• Write ALUResult to register file

• Write to Rd

ExtImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

0

1

A RD

Data

Memory

WD

WE

1

0

PC1

0

PC'

In
s
tr 19:16

15:12

11:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

A
L

U
F
la

g
s

CLK

A
LU

PCPlus8
R15

3:0

+

4

RA1

RA2

Extend

0

1

RegSrc RegWritePCSrc ImmSrc

MemWrite MemtoRegALUControlALUSrc
0 1 X 0 varies 0 00

Single-Cycle Datapath: Data-processing

ADD Rd, Rn, Rm

Chapter 7 <26> Digital Design and Computer Architecture: ARM® Edition © 2015

Calculate branch target address:
BTA = (ExtImm) + (PC + 8)

ExtImm = Imm24 << 2 and sign-extended

Single-Cycle Datapath: B

ExtImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

0

1

A RD

Data

Memory

WD

WE

1

0

PC1

0

PC'

In
s
tr

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

A
L

U
F
la

g
s

CLK

A
LU

PCPlus8
R15

3:0
+

4

15

RA1

RA2

Extend

0

1

0

1

RegSrc RegWritePCSrc ImmSrc

MemWrite MemtoRegALUControlALUSrc
11 0 10 1 00 0 0x

B Label

Chapter 7 <27> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Datapath: ExtImm

ImmSrc1:0 ExtImm Description

00 {24’b0, Instr7:0} Zero-extended imm8

01 {20’b0, Instr11:0} Zero-extended imm12

10 {6{Instr23}, Instr23:0} Sign-extended imm24

ExtImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

0

1

A RD

Data

Memory

WD

WE

1

0

PC1

0

PC'

In
s
tr

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

A
L

U
F
la

g
s

CLK

A
LU

PCPlus8
R15

3:0

+
4

15

RA1

RA2

Extend

0

1

0

1

RegSrc RegWritePCSrc ImmSrc

MemWrite MemtoRegALUControlALUSrc
11 0 10 1 00 0 0x

Chapter 7 <28> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle ARM Processor

ExtImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

0

1

A RD

Data

Memory

WD

WE

1

0

PC1

0

PC'

In
s
tr

19:16

15:12

23:0

25:20

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

27:26

ImmSrc

PCSrc

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

ALUFlags

CLK

ALUControl

A
LU

PCPlus8
R15

3:0

Cond
31:28

Flags

15:12 Rd

+

4

15

RA1

RA2

0 1

Extend

0

1

0

1

R
e
g

S
rc

Chapter 7 <29> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control

Chapter 7 <30> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control

Sent directly
to datapath

Chapter 7 <31> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control

Sent through
Conditional Logic
first, then to
datapath

Sent directly
to datapath

Chapter 7 <32> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control
• These signals change the

state (PC, RF, Memory)

• If instruction shouldn’t
execute, forced to 0

Sent through
Conditional Logic
first, then to
datapath

Sent directly
to datapath

Chapter 7 <33> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control

• FlagW1:0: Flag Write signal,
asserted when ALUFlags
should be saved (i.e., on
instruction with S=1)

Chapter 7 <34> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control

• FlagW1:0: Flag Write signal,
asserted when ALUFlags
should be saved (i.e., on
instruction with S=1)

• ADD, SUB update all flags
(NZCV)

• AND, ORR only update NZ
flags

Chapter 7 <35> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control

• FlagW1:0: Flag Write signal,
asserted when ALUFlags
should be saved (i.e., on
instruction with S=1)

• ADD, SUB update all flags
(NZCV)

• AND, ORR only update NZ
flags

• So, two bits needed:
FlagW1 = 1: NZ saved
(ALUFlags3:2 saved)
FlagW0 = 1: CV saved
(ALUFlags1:0 saved)

Chapter 7 <36> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control

Chapter 7 <37> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control: Decoder

Chapter 7 <38> Digital Design and Computer Architecture: ARM® Edition © 2015

Submodules:
• Main Decoder
• ALU Decoder
• PC Logic

Single-Cycle Control: Decoder

Chapter 7 <39> Digital Design and Computer Architecture: ARM® Edition © 2015

Submodules:
• Main Decoder
• ALU Decoder
• PC Logic

Single-Cycle Control: Decoder

Chapter 7 <40> Digital Design and Computer Architecture: ARM® Edition © 2015

O
p

F
u

n
ct

5

F
u

n
ct

0

T
y

p
e

B
ra

n
ch

M
e
m

to
R

eg

M
em

W

A
L

U
S

rc

Im
m

S
rc

R
eg

W

R
eg

S
rc

A
L

U
O

p

00 0 X DP Reg 0 0 0 0 XX 1 00 1

00 1 X DP Imm 0 0 0 1 00 1 X0 1

01 X 0 STR 0 X 1 1 01 0 10 0

01 X 1 LDR 0 1 0 1 01 1 X0 0

11 X X B 1 0 0 1 10 0 X1 0

Control Unit: Main Decoder

Chapter 7 <41> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control: Decoder

Submodules:
• Main Decoder
• ALU Decoder
• PC Logic

Chapter 7 <42> Digital Design and Computer Architecture: ARM® Edition © 2015

ALUControl1:0 Function

00 Add

01 Subtract

10 AND

11 OR

Review: ALU

Chapter 7 <43> Digital Design and Computer Architecture: ARM® Edition © 2015

Review: ALU

Chapter 7 <44> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control: Decoder

Submodules:
• Main Decoder
• ALU Decoder
• PC Logic

Chapter 7 <45> Digital Design and Computer Architecture: ARM® Edition © 2015

ALUOp Funct4:1

(cmd)

Funct0

(S)

Type ALUControl1:0 FlagW1:0

0 X X Not DP 00 00

1 0100 0 ADD 00 00

1 11

0010 0 SUB 01 00

1 11

0000 0 AND 10 00

1 10

1100 0 ORR 11 00

1 10

Control Unit: ALU Decoder

• FlagW1 = 1: NZ (Flags3:2) should be saved
• FlagW0 = 1: CV (Flags1:0) should be saved

Chapter 7 <46> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control: Decoder

Submodules:
• Main Decoder
• ALU Decoder
• PC Logic

Chapter 7 <47> Digital Design and Computer Architecture: ARM® Edition © 2015

PCS = 1 if PC is written by an instruction or branch (B):

PCS = ((Rd == 15) & RegW) | Branch

Single-Cycle Control: PC Logic

ExtImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

0

1

A RD

Data

Memory

WD

WE

1

0

PC1

0

PC'

In
s
tr

19:16

15:12

23:0

25:20

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

27:26

ImmSrc

PCSrc

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

ALUFlags

CLK

ALUControl

A
LU

PCPlus8
R15

3:0

Cond
31:28

Flags

15:12 Rd

+

4

15

RA1

RA2

0 1

Extend

0

1

0

1

R
e
g

S
rc

If instruction is executed: PCSrc = PCS
Else PCSrc = 0 (i.e., PC = PC + 4)

Chapter 7 <48> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control

Chapter 7 <49> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control: Cond. Logic

Chapter 7 <50> Digital Design and Computer Architecture: ARM® Edition © 2015

Conditional Logic

Function:
1. Check if instruction should execute (if not, force

PCSrc, RegWrite, and MemWrite to 0)
2. Possibly update Status Register (Flags3:0)

Chapter 7 <51> Digital Design and Computer Architecture: ARM® Edition © 2015

Conditional Logic

Function:
1. Check if instruction should execute (if not, force

PCSrc, RegWrite, and MemWrite to 0)
2. Possibly update Status Register (Flags3:0)

Chapter 7 <52> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control: Conditional Logic

Chapter 7 <53> Digital Design and Computer Architecture: ARM® Edition © 2015

Conditional Logic: Conditional Execution

Depending on condition mnemonic (Cond3:0) and condition flags
(Flags3:0) the instruction is executed (CondEx = 1)

Chapter 7 <54> Digital Design and Computer Architecture: ARM® Edition © 2015

Depending on condition mnemonic (Cond3:0) and condition flags
(Flags3:0) the instruction is executed (CondEx = 1)

Flags3:0 is the
status register

Conditional Logic: Conditional Execution

Chapter 7 <55> Digital Design and Computer Architecture: ARM® Edition © 2015

Cond3:0 Mnemonic Name CondEx

0000 EQ Equal 𝑍

0001 NE Not equal ҧ𝑍

0010 CS / HS Carry set / Unsigned higher or same 𝐶

0011 CC / LO Carry clear / Unsigned lower ҧ𝐶

0100 MI Minus / Negative 𝑁

0101 PL Plus / Positive of zero ഥ𝑁

0110 VS Overflow / Overflow set 𝑉

0111 VC No overflow / Overflow clear ത𝑉

1000 HI Unsigned higher ҧ𝑍𝐶

1001 LS Unsigned lower or same 𝑍 𝑂𝑅 ҧ𝐶

1010 GE Signed greater than or equal 𝑁⊕𝑉

1011 LT Signed less than 𝑁⊕𝑉

1100 GT Signed greater than ҧ𝑍(𝑁 ⊕ 𝑉)

1101 LE Signed less than or equal 𝑍 𝑂𝑅 (𝑁⊕ 𝑉)

1110 AL (or none) Always / unconditional ignored

Review: Condition Mnemonics

Chapter 7 <56> Digital Design and Computer Architecture: ARM® Edition © 2015

Example: AND R1, R2, R3

Cond3:0=1110 (unconditional) => CondEx = 1

Flags3:0 = NZCV

Conditional Logic: Conditional Execution

Chapter 7 <57> Digital Design and Computer Architecture: ARM® Edition © 2015

Example: EOREQ R5, R6, R7

Cond3:0=0000 (EQ): if Flags3:2=0100 => CondEx = 1

Flags3:0 = NZCV

Conditional Logic: Conditional Execution

Chapter 7 <58> Digital Design and Computer Architecture: ARM® Edition © 2015

Conditional Logic

Function:
1. Check if instruction should execute (if not, force

PCSrc, RegWrite, and MemWrite to 0)
2. Possibly update Status Register (Flags3:0)

Chapter 7 <59> Digital Design and Computer Architecture: ARM® Edition © 2015

Flags3:0 updated (with ALUFlags3:0) if:
• FlagW is 1 (i.e., the instruction’s S-bit is 1) AND
• CondEx is 1 (the instruction should be executed)

Flags3:0 = NZCV

Conditional Logic: Update (Set) Flags

Chapter 7 <60> Digital Design and Computer Architecture: ARM® Edition © 2015

Recall:
• ADD, SUB update

all Flags
• AND, OR update

NZ only
• So Flags status

register has two
write enables:
FlagW1:0

Conditional Logic: Update (Set) Flags

Chapter 7 <61> Digital Design and Computer Architecture: ARM® Edition © 2015

ALUOp Funct4:1

(cmd)

Funct0

(S)

Type ALUControl1:0 FlagW1:0

0 X X Not DP 00 00

1 0100 0 ADD 00 00

1 11

0010 0 SUB 01 00

1 11

0000 0 AND 10 00

1 10

1100 0 ORR 11 00

1 10

Review: ALU Decoder

• FlagW1 = 1: NZ (Flags3:2) should be saved
• FlagW0 = 1: CV (Flags1:0) should be saved

Chapter 7 <62> Digital Design and Computer Architecture: ARM® Edition © 2015

Conditional Logic: Update (Set) Flags

All Flags
updated

Example: SUBS R5, R6, R7
FlagW1:0 = 11 AND CondEx = 1 (unconditional) => FlagWrite1:0 = 11

Chapter 7 <63> Digital Design and Computer Architecture: ARM® Edition © 2015

Conditional Logic: Update (Set) Flags

Flags3:0 = NZCV

• Only Flags3:2

updated
• i.e., only NZ

Flags
updated

Example: ANDS R7, R1, R3
FlagW1:0 = 10 AND CondEx = 1 (unconditional) => FlagWrite1:0 = 10

Chapter 7 <64> Digital Design and Computer Architecture: ARM® Edition © 2015

Example: ORR

O
p

F
u

n
ct

5

F
u

n
ct

0

T
y

p
e

B
ra

n
ch

M
em

to
R

eg

M
e
m

W

A
L

U
S

rc

Im
m

S
rc

R
eg

W

R
eg

S
rc

A
L

U
O

p

00 0 X DP Reg 0 0 0 0 XX 1 00 1

Chapter 7 <65> Digital Design and Computer Architecture: ARM® Edition © 2015

Example: ORR

Chapter 7 <66> Digital Design and Computer Architecture: ARM® Edition © 2015

Extended Functionality: CMP

Chapter 7 <67> Digital Design and Computer Architecture: ARM® Edition © 2015

Extended Functionality: CMP

No change to datapath

Chapter 7 <68> Digital Design and Computer Architecture: ARM® Edition © 2015

Extended Functionality: CMP

Chapter 7 <69> Digital Design and Computer Architecture: ARM® Edition © 2015

Extended Functionality: CMP

ALUOp Funct4:1

(cmd)

Funct0

(S)

Type ALUControl1:0 FlagW1:0 NoWrite

0 X X Not DP 00 00 0

1 0100 0 ADD 00 00 0

1 11 0

0010 0 SUB 01 00 0

1 11 0

0000 0 AND 10 00 0

1 10 0

1100 0 ORR 11 00 0

1 10 0

1010 1 CMP 01 11 1

Chapter 7 <70> Digital Design and Computer Architecture: ARM® Edition © 2015

Extended Functionality: Shifted Register

cond op cmd rn rd

Field Values

31:28 27:26 24:21 19:16 15:12

0

I

25

S

20

14 0 4 0 2 7

shshamt5

0

rm

411:7 6:5 3:0

5 012 12

Assembly Code

ADD R7, R2, R12, LSR #5

Chapter 7 <71> Digital Design and Computer Architecture: ARM® Edition © 2015

No change to controller

Extended Functionality: Shifted Register

Chapter 7 <72> Digital Design and Computer Architecture: ARM® Edition © 2015

Program Execution Time

= (#instructions)(cycles/instruction)(seconds/cycle)

= # instructions x CPI x TC

Review: Processor Performance

Chapter 7 <73> Digital Design and Computer Architecture: ARM® Edition © 2015

TC limited by critical path (LDR)

Single-Cycle Performance

Chapter 7 <74> Digital Design and Computer Architecture: ARM® Edition © 2015

• Single-cycle critical path:
Tc1 = tpcq_PC + tmem + tdec + max[tmux + tRFread, tsext +
tmux] + tALU + tmem + tmux + tRFsetup

• Typically, limiting paths are:
– memory, ALU, register file

– Tc1 = tpcq_PC + 2tmem + tdec + tRFread + tALU + 2tmux +
tRFsetup

Single-Cycle Performance

Chapter 7 <75> Digital Design and Computer Architecture: ARM® Edition © 2015

Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 40

Register setup tsetup 50

Multiplexer tmux 25

ALU tALU 120

Decoder tdec 70

Memory read tmem 200

Register file read tRFread 100

Register file setup tRFsetup 60

Tc1 = ?

Single-Cycle Performance Example

Chapter 7 <76> Digital Design and Computer Architecture: ARM® Edition © 2015

Tc1 = tpcq_PC + 2tmem + tdec + tRFread + tALU + 2tmux + tRFsetup

= [50 + 2(200) + 70 + 100 + 120 + 2(25) + 60] ps

= 840 ps

Single-Cycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 40

Register setup tsetup 50

Multiplexer tmux 25

ALU tALU 120

Decoder tdec 70

Memory read tmem 200

Register file read tRFread 100

Register file setup tRFsetup 60

Chapter 7 <77> Digital Design and Computer Architecture: ARM® Edition © 2015

Program with 100 billion instructions:

Execution Time = # instructions x CPI x TC

= (100 × 109)(1)(840 × 10-12 s)

= 84 seconds

Single-Cycle Performance Example

Chapter 7 <78> Digital Design and Computer Architecture: ARM® Edition © 2015

• Single-cycle:
+ simple

- cycle time limited by longest instruction (LDR)

- separate memories for instruction and data

- 3 adders/ALUs

• Multicycle processor addresses these issues by
breaking instruction into shorter steps
o shorter instructions take fewer steps

o can re-use hardware

o cycle time is faster

Multicycle ARM Processor

Chapter 7 <79> Digital Design and Computer Architecture: ARM® Edition © 2015

• Single-cycle:
+ simple

- cycle time limited by longest instruction (LDR)

- separate memories for instruction and data

- 3 adders/ALUs

• Multicycle:
+ higher clock speed

+ simpler instructions run faster

+ reuse expensive hardware on multiple cycles

- sequencing overhead paid many times

Multicycle ARM Processor

Chapter 7 <80> Digital Design and Computer Architecture: ARM® Edition © 2015

• Single-cycle:
+ simple

- cycle time limited by longest instruction (LDR)

- separate memories for instruction and data

- 3 adders/ALUs

• Multicycle:
+ higher clock speed

+ simpler instructions run faster

+ reuse expensive hardware on multiple cycles

- sequencing overhead paid many times

Multicycle ARM Processor

Same design steps
as single-cycle:
• first datapath
• then control

Chapter 7 <81> Digital Design and Computer Architecture: ARM® Edition © 2015

Replace Instruction and Data memories with a
single unified memory – more realistic

Multicycle State Elements

Chapter 7 <82> Digital Design and Computer Architecture: ARM® Edition © 2015

STEP 1: Fetch instruction

Multicycle Datapath: Instruction Fetch

LDR Rd, [Rn, imm12]

Chapter 7 <83> Digital Design and Computer Architecture: ARM® Edition © 2015

LDR Rd, [Rn, imm12]

Multicycle Datapath: LDR Register Read

STEP 2: Read source operands from RF

Chapter 7 <84> Digital Design and Computer Architecture: ARM® Edition © 2015

LDR Rd, [Rn, imm12]

Multicycle Datapath: LDR Address

STEP 3: Compute the memory address

Chapter 7 <85> Digital Design and Computer Architecture: ARM® Edition © 2015

LDR Rd, [Rn, imm12]

Multicycle Datapath: LDR Memory Read

STEP 4: Read data from memory

Chapter 7 <86> Digital Design and Computer Architecture: ARM® Edition © 2015

LDR Rd, [Rn, imm12]

Multicycle Datapath: LDR Write Register

STEP 5: Write data back to register file

Chapter 7 <87> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Datapath: Increment PC

STEP 6: Increment PC

Chapter 7 <88> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Datapath: Access to PC

PC can be read/written by instruction

Chapter 7 <89> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Datapath: Access to PC

PC can be read/written by instruction
• Read: R15 (PC+8) available in Register File

Chapter 7 <90> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Datapath: Read to PC (R15)

Example: ADD R1, R15, R2

Chapter 7 <91> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Datapath: Read to PC (R15)

Example: ADD R1, R15, R2

• R15 needs to be read as PC+8 from Register File (RF) in 2nd step

• So (also in 2nd step) PC + 8 is produced by ALU and routed to R15
input of RF

Chapter 7 <92> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Datapath: Read to PC (R15)

Example: ADD R1, R15, R2

• R15 needs to be read as PC+8 from Register File (RF) in 2nd step

• So (also in 2nd step) PC + 8 is produced by ALU and routed to R15
input of RF

– SrcA = PC (which was already updated in step 1 to PC+4)

– SrcB = 4

– ALUResult = PC + 8

• ALUResult is fed to R15 input port of RF in 2nd step (which is then
routed to RD1 output of RF)

Chapter 7 <93> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Datapath: Read to PC (R15)

Example: ADD R1, R15, R2

• R15 needs to be read as PC+8 from Register File (RF) in 2nd step

• So (also in 2nd step) PC + 8 is produced by ALU and routed to R15
input of RF

Chapter 7 <94> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Datapath: Access to PC

PC can be read/written by instruction
• Read: R15 (PC+8) available in Register File

• Write: Be able to write result of instruction to PC

Chapter 7 <95> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Datapath: Write to PC (R15)

Example: SUB R15, R8, R3

Chapter 7 <96> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Datapath: Write to PC (R15)

Example: SUB R15, R8, R3

• Result of instruction needs to be written to the PC register

• ALUResult already routed to the PC register, just assert PCWrite

Chapter 7 <97> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Datapath: Write to PC (R15)

Example: SUB R15, R8, R3

• Result of instruction needs to be written to the PC register

• ALUResult already routed to the PC register, just assert PCWrite

Chapter 7 <98> Digital Design and Computer Architecture: ARM® Edition © 2015

Write data in Rn to memory

Multicycle Datapath: STR

Chapter 7 <99> Digital Design and Computer Architecture: ARM® Edition © 2015

With immediate addressing (i.e., an
immediate Src2), no additional changes
needed for datapath

Multicycle Datapath: Data-processing

Chapter 7 <100> Digital Design and Computer Architecture: ARM® Edition © 2015

With register addressing (register Src2):

Read from Rn and Rm

Multicycle Datapath: Data-processing

Chapter 7 <101> Digital Design and Computer Architecture: ARM® Edition © 2015

Calculate branch target address:
BTA = (ExtImm) + (PC+8)
ExtImm = Imm24 << 2 and sign-extended

Multicycle Datapath: B

Chapter 7 <102> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle ARM Processor

Chapter 7 <103> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Control

• First, discuss Decoder
• Then, Conditional Logic

Chapter 7 <104> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Control: Decoder

Chapter 7 <105> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Control: Decoder

Decoder

Chapter 7 <106> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Control: Decoder

ALU Decoder and PC Logic same as single-cycle

Chapter 7 <107> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Control: Instr Decoder

RegSrc0 = (Op == 102)
RegSrc1 = (Op == 012)
ImmSrc1:0 = Op

ImmSrc1:0

RegSrc1:0

Instr

Decoder
Op1:0

Instruction Op Funct5 Funct0 RegSrc0 RegSrc1 ImmSrc1:0

LDR 01 X 1 0 X 01

STR 01 X 0 0 1 01

DP immediate 00 1 X 0 X 00

DP register 00 0 X 0 0 00

B 10 X X 1 X 10

Chapter 7 <108> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle ARM Processor

Chapter 7 <109> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Control: Main FSM

Decoder

Chapter 7 <110> Digital Design and Computer Architecture: ARM® Edition © 2015

Main Controller FSM: Fetch

Chapter 7 <111> Digital Design and Computer Architecture: ARM® Edition © 2015

Main Controller FSM: Decode

Chapter 7 <112> Digital Design and Computer Architecture: ARM® Edition © 2015

Main Controller FSM: Address

Chapter 7 <113> Digital Design and Computer Architecture: ARM® Edition © 2015

Main Controller FSM: Read Memory

Chapter 7 <114> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle ARM Processor

Chapter 7 <115> Digital Design and Computer Architecture: ARM® Edition © 2015

Main Controller FSM: LDR

Chapter 7 <116> Digital Design and Computer Architecture: ARM® Edition © 2015

Main Controller FSM: STR

Chapter 7 <117> Digital Design and Computer Architecture: ARM® Edition © 2015

Main Controller FSM: Data-processing

Chapter 7 <118> Digital Design and Computer Architecture: ARM® Edition © 2015

Main Controller FSM: Data-processing

Chapter 7 <119> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Controller FSM

Chapter 7 <120> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Control

• First, discuss Decoder
• Then, Conditional Logic

Chapter 7 <121> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Control: Cond. Logic

Chapter 7 <122> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Conditional Logic

Chapter 7 <123> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Conditional Logic

Cond3:0

Flags3:2

CLK

CLK
ALUFlags3:0

Flags1:0

[3:2]

[1:0]

PCS

[1]

[0]

C
o

n
d
itio

n

C
h

e
c

k

FlagW1:0

PCWrite

MemWrite

RegWrite

C
o
n

d
E

x

MemW

RegW

NextPC

C
L
K

F
la

g
W

rite
1

:0

• PCWrite asserted in Fetch
state

• ExecuteI/ExecuteR state:
CondEx asserts
ALUFlags generated

• ALUWB state:
Flags updated
CondEx changes
PCWrite, RegWrite, and
MemWrite don’t see
change till new
instruction (Fetch state)

Chapter 7 <124> Digital Design and Computer Architecture: ARM® Edition © 2015

• Instructions take different number of cycles.

Multicycle Processor Performance

Chapter 7 <125> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Controller FSM

Chapter 7 <126> Digital Design and Computer Architecture: ARM® Edition © 2015

• Instructions take different number of cycles:
– 3 cycles:

– 4 cycles:

– 5 cycles:

Multicycle Processor Performance

Chapter 7 <127> Digital Design and Computer Architecture: ARM® Edition © 2015

• Instructions take different number of cycles:
– 3 cycles: B

– 4 cycles: DP, STR

– 5 cycles: LDR

Multicycle Processor Performance

Chapter 7 <128> Digital Design and Computer Architecture: ARM® Edition © 2015

• Instructions take different number of cycles:
– 3 cycles: B

– 4 cycles: DP, STR

– 5 cycles: LDR

• CPI is weighted average

• SPECINT2000 benchmark:
– 25% loads

– 10% stores

– 13% branches

– 52% R-type

Multicycle Processor Performance

Chapter 7 <129> Digital Design and Computer Architecture: ARM® Edition © 2015

• Instructions take different number of cycles:
– 3 cycles: B

– 4 cycles: DP, STR

– 5 cycles: LDR

• CPI is weighted average

• SPECINT2000 benchmark:
– 25% loads

– 10% stores

– 13% branches

– 52% R-type

Average CPI = (0.13)(3) + (0.52 + 0.10)(4) + (0.25)(5) = 4.12

Multicycle Processor Performance

Chapter 7 <130> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle critical path:

• Assumptions:
• RF is faster than memory

• writing memory is faster than reading memory

Tc2 = tpcq + 2tmux + max(tALU + tmux, tmem) + tsetup

Multicycle Processor Performance

Chapter 7 <131> Digital Design and Computer Architecture: ARM® Edition © 2015

Tc2 = ?

Multicycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 40

Register setup tsetup 50

Multiplexer tmux 25

ALU tALU 120

Decoder tdec 70

Memory read tmem 200

Register file read tRFread 100

Register file setup tRFsetup 60

Chapter 7 <132> Digital Design and Computer Architecture: ARM® Edition © 2015

Tc2 = tpcq + 2tmux + max[tALU + tmux, tmem] + tsetup

= [40 + 2(25) + 200 + 50] ps = 340 ps

Multicycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 40

Register setup tsetup 50

Multiplexer tmux 25

ALU tALU 120

Decoder tdec 70

Memory read tmem 200

Register file read tRFread 100

Register file setup tRFsetup 60

Chapter 7 <133> Digital Design and Computer Architecture: ARM® Edition © 2015

For a program with 100 billion instructions
executing on a multicycle ARM processor

– CPI = 4.12 cycles/instruction

– Clock cycle time: Tc2 = 340 ps

Execution Time = ?

Multicycle Performance Example

Chapter 7 <134> Digital Design and Computer Architecture: ARM® Edition © 2015

For a program with 100 billion instructions
executing on a multicycle ARM processor

– CPI = 4.12 cycles/instruction

– Clock cycle time: Tc2 = 340 ps

Execution Time = (# instructions) × CPI × Tc

= (100 × 109)(4.12)(340 × 10-12)

= 140 seconds

Multicycle Performance Example

Chapter 7 <135> Digital Design and Computer Architecture: ARM® Edition © 2015

For a program with 100 billion instructions
executing on a multicycle ARM processor

– CPI = 4.12 cycles/instruction

– Clock cycle time: Tc2 = 340 ps

Execution Time = (# instructions) × CPI × Tc

= (100 × 109)(4.12)(340 × 10-12)

= 140 seconds

This is slower than the single-cycle processor (84 sec.)

Multicycle Performance Example

Chapter 7 <136> Digital Design and Computer Architecture: ARM® Edition © 2015

Review: Single-Cycle ARM Processor

ExtImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

0

1

A RD

Data

Memory

WD

WE

1

0

PC1

0

PC'

In
s
tr

19:16

15:12

23:0

25:20

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

27:26

ImmSrc

PCSrc

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

ALUFlags

CLK

ALUControl

A
LU

PCPlus8
R15

3:0

Cond
31:28

Flags

15:12 Rd

+

4

15

RA1

RA2

0 1

Extend

0

1

0

1

R
e
g

S
rc

Chapter 7 <137> Digital Design and Computer Architecture: ARM® Edition © 2015

Review: Multicycle ARM Processor

Chapter 7 <138> Digital Design and Computer Architecture: ARM® Edition © 2015

• Temporal parallelism

• Divide single-cycle processor into 5 stages:
– Fetch

– Decode

– Execute

– Memory

– Writeback

• Add pipeline registers between stages

Pipelined ARM Processor

Chapter 7 <139> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle vs. Pipelined

Time (ps)
Instr

Fetch
Instruction

Dec
Read
Reg

Execute
ALU

Memory
Read / Write

Wr
Reg

1

2

0 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 15001000

Instr

1

2

(b)

3

Fetch
Instruction

Dec
Read
Reg

Execute
ALU

Memory
Read / Write

Wr
Reg

Fetch
Instruction

Dec
Read
Reg

Execute
ALU

Memory
Read / Write

Wr
Reg

Fetch
Instruction

Dec
Read
Reg

Execute
ALU

Memory
Read / Write

Wr
Reg

Fetch
Instruction

Dec
Read
Reg

Execute
ALU

Memory
Read / Write

Wr
Reg

Single-Cycle

Pipelined

Chapter 7 <140> Digital Design and Computer Architecture: ARM® Edition © 2015

Pipelined Processor Abstraction

Time (cycles)

LDR R2, [R0, #40] RF 40

R0

RF
R2

+ DM

RF R10

R9

RF
R3

+ DM

RF R5

R1

RF
R4

- DM

RF R13

R12

RF
R5

& DM

RF 20

R1

RF
R6

+ DM

RF 42

R11

RF
R7

| DM

ADD R3, R9, R10

SUB R4, R1, R5

AND R5, R12, R13

STR R6, [R1, #20]

ORR R7, R11, #42

1 2 3 4 5 6 7 8 9 10

ADD

IM

IM

IM

IM

IM

IM
LDR

SUB

AND

STR

ORR

Chapter 7 <141> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle & Pipelined Datapath

ExtImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

0

1

A RD

Data

Memory

WD

WE

1

0

PC1

0

PC'

In
s
tr

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

CLK

A
LU

PCPlus8
R15

3:0

+

4

15

RA1

RA2

Extend

0

1

0

1

ExtImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

0

1

A RD

Data

Memory

WD

WE

1

0

PCF1

0

PC'

In
s
trD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

A
LU

PCPlus8
R15

3:0

+

4

15

RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

Fetch Decode Execute Memory Writeback

In
s
trF

ALUOutM ALUOutW

WA3D

Single-Cycle

Pipelined

Chapter 7 <142> Digital Design and Computer Architecture: ARM® Edition © 2015

• WA3 must arrive at same time as Result

• Register file written on falling edge of CLK

Corrected Pipelined Datapath

ExtImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

0

1

A RD

Data

Memory

WD

WE

1

0

PCF1

0

PC'

In
s
trD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

A
LU

PCPlus8

R15

3:0

+

4

15

RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

In
s
trF

ALUOutM ALUOutW

WA3E WA3M WA3WWA3D

Chapter 7 <143> Digital Design and Computer Architecture: ARM® Edition © 2015

Remove adder by using PCPlus4F after PC has been updated to PC+4

Optimized Pipelined Datapath

ExtImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

0

1

A RD

Data

Memory

WD

WE

1

0

PCF1

0

PC'

In
s
trD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

A
LU

R15

3:0

15

RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

In
s
trF

ALUOutM ALUOutW

WA3E WA3M WA3WWA3D

PCPlus8D

ExtImmE

CLK

A RD

Instruction

Memory
+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

0

1

A RD

Data

Memory

WD

WE

1

0

PCF1

0

PC'

In
s
trD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

A
LU

PCPlus8

R15

3:0

+

4

15

RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

In
s
trF

ALUOutM ALUOutW

WA3E WA3M WA3WWA3D

Chapter 7 <144> Digital Design and Computer Architecture: ARM® Edition © 2015

• Same control unit as single-cycle processor
• Control delayed to proper pipeline stage

Pipelined Processor Control

E
x
tIm

m
E

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

0

1

A RD

Data

Memory

WD

WE

1

0

PCFPC'

In
s
trD

19:16

15:12

23:0

25:20

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

27:26

ImmSrcD

MemWriteD

MemtoRegD

ALUSrcD

RegWriteD

Op

Funct

Control

Unit

ALUFlags

CLK

ALUControlD

A
LU

PCPlus8D

R15

3:0

31:28

FlagWriteD

15:12 Rd

15

RA1D

RA2D

0 1

Extend

0

1

0

1

R
e
g

S
rc

D

CLK

In
s
trF

CLK

ALUOutM ALUOutW

WA3E WA3M WA3W

CLK CLK

MemWriteE

MemtoRegE

ALUSrcE

RegWriteE

ALUControlE
MemWriteM

MemtoRegM

RegWriteM

MemtoRegW

RegWriteW

BranchD

FlagsE

FlagWriteE

BranchE

CondE

C
o
n

d
E

x
E

1

0

PCSrcD PCSrcE PCSrcM PCSrcW

F
la

g
s'

Cond

Unit

Chapter 7 <145> Digital Design and Computer Architecture: ARM® Edition © 2015

• When an instruction depends on result from
instruction that hasn’t completed

• Types:

– Data hazard: register value not yet written back to
register file

– Control hazard: next instruction not decided yet
(caused by branch)

Pipeline Hazards

Chapter 7 <146> Digital Design and Computer Architecture: ARM® Edition © 2015

Data Hazard

Time (cycles)

ADD R1, R4, R5 RF R5

R4

RF
R1

+ DM

RF R3

R1

RF
R8

& DM

RF R1

R6

RF
R9

| DM

RF R7

R1

RF
R10

- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM
ADD

ORR

SUB

Chapter 7 <147> Digital Design and Computer Architecture: ARM® Edition © 2015

• Insert NOPs in code at compile time

• Rearrange code at compile time

• Forward data at run time

• Stall the processor at run time

Handling Data Hazards

Chapter 7 <148> Digital Design and Computer Architecture: ARM® Edition © 2015

• Insert enough NOPs for result to be ready

• Or move independent useful instructions forward

Compile-Time Hazard Elimination

Time (cycles)

ADD R1, R4, R5 RF R5

R4

RF
R1

+ DM

RF R3

R1

RF
R8

& DM

RF R1

R6

RF
R9

| DM

RF R7

R1

RF
R10

- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM
ADD

ORR

SUB

NOP

NOP

RF RFDMNOP
IM

RF RFDMNOP
IM

9 10

Chapter 7 <149> Digital Design and Computer Architecture: ARM® Edition © 2015

Data Forwarding

Time (cycles)

ADD R1, R4, R5 RF R5

R4

RF
R1

+ DM

RF R3

R1

RF
R8

& DM

RF R1

R6

RF
R9

| DM

RF R7

R1

RF
R10

- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM
ADD

ORR

SUB

Chapter 7 <150> Digital Design and Computer Architecture: ARM® Edition © 2015

Data Forwarding

• Check if register read in Execute stage matches register
written in Memory or Writeback stage

• If so, forward result

Time (cycles)

ADD R1, R4, R5 RF R5

R4

RF
R1

+ DM

RF R3

R1

RF
R8

& DM

RF R1

R6

RF
R9

| DM

RF R7

R1

RF
R10

- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM
ADD

ORR

SUB

Chapter 7 <151> Digital Design and Computer Architecture: ARM® Edition © 2015

Data Forwarding

E
x
tIm

m
E

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

Register

File

0

1

A RD

Data

Memory

WD

WE

1

0

PCFPC'

In
s
trD

19:16

15:12

23:0

25:20

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

27:26

ImmSrcD

MemWriteD

MemtoRegD

ALUSrcD

RegWriteD

Op

Funct

Control

Unit

ALUFlags

CLK

ALUControlD

A
LU

PCPlus8D

R15

3:0

31:28

FlagWriteD

15:12 Rd

15

RA1D

RA2D

0 1

Extend

0

1

0

1

R
e
g

S
rc

D

CLK

In
s
trF

CLK

ALUOutM ALUOutW

WA3E WA3M WA3W

CLK CLK

MemWriteE

MemtoRegE

ALUSrcE

RegWriteE

ALUControlE
MemWriteM

MemtoRegM

RegWriteM

MemtoRegW

RegWriteW

BranchD

FlagsE

FlagWriteE

BranchE

CondE

C
o
n

d
E

x
E

1

0

PCSrcD PCSrcE PCSrcM PCSrcW

F
la

g
s'

Cond

Unit

00
01
10

00
01
10

Hazard Unit

F
o
rw

a
rd

A
E

F
o
rw

a
rd

B
E

R
e
g

W
rite

M

M
a
tc

h

R
e
g

W
rite

W

CLK

Chapter 7 <152> Digital Design and Computer Architecture: ARM® Edition © 2015

Data Forwarding
• Execute stage register matches Memory stage register?

Match_1E_M = (RA1E == WA3M)
Match_2E_M = (RA2E == WA3M)

• Execute stage register matches Writeback stage register?
Match_1E_W = (RA1E == WA3W)
Match_2E_W = (RA2E == WA3W)

• If it matches, forward result:

if (Match_1E_M • RegWriteM) ForwardAE = 10;
else if (Match_1E_W • RegWriteW) ForwardAE = 01;
else ForwardAE = 00;

Chapter 7 <153> Digital Design and Computer Architecture: ARM® Edition © 2015

Data Forwarding
• Execute stage register matches Memory stage register?

Match_1E_M = (RA1E == WA3M)
Match_2E_M = (RA2E == WA3M)

• Execute stage register matches Writeback stage register?
Match_1E_W = (RA1E == WA3W)
Match_2E_W = (RA2E == WA3W)

• If it matches, forward result:

if (Match_1E_M • RegWriteM) ForwardAE = 10;
else if (Match_1E_W • RegWriteW) ForwardAE = 01;
else ForwardAE = 00;

ForwardBE same but with Match2E

Chapter 7 <154> Digital Design and Computer Architecture: ARM® Edition © 2015

Stalling

Time (cycles)

LDR R1, [R4, #40] RF 40

R4

RF
R1

+ DM

RF R3

R1

RF
R8

& DM

RF R1

R6

RF
R9

| DM

RF R7

R1

RF
R10

- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM
LDR

ORR

SUB

Trouble!

Chapter 7 <155> Digital Design and Computer Architecture: ARM® Edition © 2015

Stalling

Time (cycles)

LDR R1, [R4, #40] RF 40

R4

RF
R1

+ DM

RF R3

R1

RF
R8

& DM

RF R1

R6

RF
R9

| DM

RF R7

R1

RF
R10

- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM
LDR

ORR

SUB

9

RF R3

R1

IM
ORR

Stall

Chapter 7 <156> Digital Design and Computer Architecture: ARM® Edition © 2015

Stalling Hardware

E
x
tIm

m
E

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

Register

File

0

1

A RD

Data

Memory

WD

WE

1

0

PCFPC'

In
s
trD

19:16

15:12

23:0

25:20

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

27:26

ImmSrcD

MemWriteD

MemtoRegD

ALUSrcD

RegWriteD

Op

Funct

Control

Unit

ALUFlags

CLK

ALUControlD

A
LU

PCPlus8D

R15

3:0

31:28

FlagWriteD

15:12 Rd

15

RA1D

RA2D

0 1

Extend

0

1

0

1

R
e
g

S
rc

D

CLK

In
s
trF

CLK

ALUOutM ALUOutW

WA3E WA3M WA3W

CLK CLK

MemWriteE

MemtoRegE

ALUSrcE

RegWriteE

ALUControlE
MemWriteM

MemtoRegM

RegWriteM

MemtoRegW

RegWriteW

BranchD

FlagsE

FlagWriteE

BranchE

CondE
C

o
n

d
E

x
E

1

0

PCSrcD PCSrcE PCSrcM PCSrcW

F
la

g
s'

Cond

Unit

00
01
10

00
01
10

Hazard Unit

F
o
rw

a
rd

A
E

F
o
rw

a
rd

B
E

R
e
g

W
rite

M

M
a
tc

h

R
e
g

W
rite

W

M
e
m

to
R

e
g
E

S
ta

llF

S
ta

llD

F
lu

s
h

E

E
N

C
L

R

C
L

R
E

N

F
lu

s
h

D

CLK

Chapter 7 <157> Digital Design and Computer Architecture: ARM® Edition © 2015

• Is either source register in the Decode stage the
same as the one being written in the Execute
stage?

Match_12D_E = (RA1D == WA3E) + (RA2D == WA3E)

• Is a LDR in the Execute stage AND Match_12D_E?

ldrstall = Match_12D_E • MemtoRegE

StallF = StallD = FlushE = ldrstall

Stalling Logic

Chapter 7 <158> Digital Design and Computer Architecture: ARM® Edition © 2015

• B:

– branch not determined until the Writeback stage
of pipeline

– Instructions after branch fetched before branch
occurs

– These 4 instructions must be flushed if branch
happens

• Writes to PC (R15) similar

Control Hazards

Chapter 7 <159> Digital Design and Computer Architecture: ARM® Edition © 2015

Control Hazards

Time (cycles)

B 3C RF RFDM

RF R3

R1

RF& DM

RF R1

R6

RF| DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM
B

ORR

20

24

28

2C

34
...

...

9

Flush
these

instructions

64 ADD R12, R3, R4 RF R4

R3

RF
R12+ DMIM

ADD

RF R7

R1

RF- DMIM
SUB

RF R8

R1

RF- DMIM
SUB

SUB R11, R1, R830

10

Branch misprediction penalty
• number of instruction flushed when branch is taken (4)

• May be reduced by determining BTA earlier

Chapter 7 <160> Digital Design and Computer Architecture: ARM® Edition © 2015

Early Branch Resolution

• Determine BTA in Execute stage

– Branch misprediction penalty = 2 cycles

• Hardware changes
– Add a branch multiplexer before PC register to select BTA

from ALUResultE

– Add BranchTakenE select signal for this multiplexer (only
asserted if branch condition satisfied)

– PCSrcW now only asserted for writes to PC

Chapter 7 <161> Digital Design and Computer Architecture: ARM® Edition © 2015

Pipelined processor with Early BTA

E
x
tIm

m
E

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

Register

File

0

1

A RD

Data

Memory

WD

WE

1

0

PCF0

1

PC'

In
s
trD

19:16

15:12

23:0

25:20

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

27:26

ImmSrcD

MemWriteD

MemtoRegD

ALUSrcD

RegWriteD

Op

Funct

Control

Unit

ALUFlags

CLK

ALUControlD

A
LU

PCPlus8D

R15

3:0

31:28

FlagWriteD

15:12 Rd

15

RA1D

RA2D

0 1

Extend

0

1

0

1

R
e
g

S
rc

D

CLK

In
s
trF

CLK

ALUOutM ALUOutW

00
01
10

00
01
10

WA3E WA3M WA3W

CLK CLK

MemWriteE

MemtoRegE

ALUSrcE

RegWriteE

ALUControlE
MemWriteM

MemtoRegM

RegWriteM

MemtoRegW

RegWriteW

BranchD

FlagsE

FlagWriteE

BranchE

CondE

C
o
n

d
E

x
E

Hazard Unit

S
ta

llF

S
ta

llD

F
lu

s
h

E

F
o
rw

a
rd

A
E

F
o
rw

a
rd

B
E

E
N

C
L

R

C
L

R
E

N

1

0

PCSrcD PCSrcE PCSrcM PCSrcW

F
lu

s
h

D

F
la

g
s'

Cond

Unit

BranchTakenE

R
e
g

W
rite

M

M
a
tc

h

R
e
g

W
rite

W

M
e
m

to
R

e
g
E

CLK

Chapter 7 <162> Digital Design and Computer Architecture: ARM® Edition © 2015

Control Hazards with Early BTA

Time (cycles)

B 3C RF RFDM

RF R3

R1

RF& DM

RF R1

R6

RF| DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM
B

ORR

20

24

28

2C

34
...

...

9

Flush
these

instructions

64 ADD R12, R3, R4 RF R4

R3

RF
R12+ DMIM

ADD

SUB R11, R1, R830

10

Chapter 7 <163> Digital Design and Computer Architecture: ARM® Edition © 2015

• PCWrPendingF = 1 if write to PC in Decode, Execute or
Memory

PCWrPendingF = PCSrcD + PCSrcE + PCSrcM

• Stall Fetch if PCWrPendingF
StallF = ldrStallD + PCWrPendingF

• Flush Decode if PCWrPendingF OR PC is written in
Writeback OR branch is taken

FlushD = PCWrPendingF + PCSrcW + BranchTakenE

• Flush Execute if branch is taken
FlushE = ldrStallD + BranchTakenE

• Stall Decode if ldrStallD (as before)
StallD = ldrStallD

Control Stalling Logic

Chapter 7 <164> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Pipelined Processor with Hazard Unit

E
x
tIm

m
E

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

Register

File

0

1

A RD

Data

Memory

WD

WE

1

0

PCF0

1

PC'

In
s
trD

19:16

15:12

23:0

25:20

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

27:26

ImmSrcD

MemWriteD

MemtoRegD

ALUSrcD

RegWriteD

Op

Funct

Control

Unit

ALUFlags

CLK

ALUControlD

A
LU

PCPlus8D

R15

3:0

31:28

FlagWriteD

15:12 Rd

15

RA1D

RA2D

0 1

Extend

0

1

0

1

R
e
g

S
rc

D

CLK

In
s
trF

CLK

ALUOutM ALUOutW

00
01
10

00
01
10

WA3E WA3M WA3W

CLK CLK

MemWriteE

MemtoRegE

ALUSrcE

RegWriteE

ALUControlE
MemWriteM

MemtoRegM

RegWriteM

MemtoRegW

RegWriteW

BranchD

FlagsE

FlagWriteE

BranchE

CondE

C
o
n

d
E

x
E

Hazard Unit

S
ta

llF

S
ta

llD

F
lu

s
h

E

F
o
rw

a
rd

A
E

F
o
rw

a
rd

B
E

E
N

C
L

R

C
L

R
E

N

1

0

PCSrcD PCSrcE PCSrcM PCSrcW

F
lu

s
h

D

F
la

g
s'

Cond

Unit

BranchTakenE

R
e
g

W
rite

M

M
a
tc

h

R
e
g

W
rite

W

M
e
m

to
R

e
g
E

CLK

Chapter 7 <165> Digital Design and Computer Architecture: ARM® Edition © 2015

• SPECINT2000 benchmark:
– 25% loads

– 10% stores

– 13% branches

– 52% R-type

• Suppose:
– 40% of loads used by next instruction

– 50% of branches mispredicted

• What is the average CPI?

Pipelined Performance Example

Chapter 7 <166> Digital Design and Computer Architecture: ARM® Edition © 2015

• SPECINT2000 benchmark:
– 25% loads

– 10% stores

– 13% branches

– 52% R-type

• Suppose:
– 40% of loads used by next instruction

– 50% of branches mispredicted

• What is the average CPI?
– Load CPI = 1 when not stalling, 2 when stalling

So, CPIlw = 1(0.6) + 2(0.4) = 1.4

– Branch CPI = 1 when not stalling, 3 when stalling

So, CPIbeq = 1(0.5) + 3(0.5) = 2

Average CPI = (0.25)(1.4) + (0.1)(1) + (0.13)(2) + (0.52)(1) = 1.23

Pipelined Performance Example

Chapter 7 <167> Digital Design and Computer Architecture: ARM® Edition © 2015

• Pipelined processor critical path:

Tc3 = max [

tpcq + tmem + tsetup Fetch

2(tRFread + tsetup) Decode

tpcq + 2tmux + tALU + tsetup Execute

tpcq + tmem + tsetup Memory

2(tpcq + tmux + tRFwrite)] Writeback

Pipelined Performance

Chapter 7 <168> Digital Design and Computer Architecture: ARM® Edition © 2015

Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 40

Register setup tsetup 50

Multiplexer tmux 25

ALU tALU 120

Memory read tmem 200

Register file read tRFread 100

Register file setup tRFsetup 60

Register file write tRFwrite 70

Cycle time: Tc3 = ?

Pipelined Performance Example

Chapter 7 <169> Digital Design and Computer Architecture: ARM® Edition © 2015

Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 40

Register setup tsetup 50

Multiplexer tmux 25

ALU tALU 120

Memory read tmem 200

Register file read tRFread 100

Register file setup tRFsetup 60

Register file write tRFwrite 70

Cycle time: Tc3 = 2(tRFread + tsetup)

= 2[100 + 50] ps = 300 ps

Pipelined Performance Example

Chapter 7 <170> Digital Design and Computer Architecture: ARM® Edition © 2015

Program with 100 billion instructions

Execution Time = (# instructions) × CPI × Tc

= (100 × 109)(1.23)(300 × 10-12)

= 36.9 seconds

Pipelined Performance Example

Chapter 7 <171> Digital Design and Computer Architecture: ARM® Edition © 2015

Processor

Execution
Time

(seconds)

Speedup

(single-cycle as baseline)

Single-cycle 84 1

Multicycle 140 0.6

Pipelined 36.9 2.28

Processor Performance Comparison

Chapter 7 <172> Digital Design and Computer Architecture: ARM® Edition © 2015

• Deep Pipelining
• Micro-operations
• Branch Prediction
• Superscalar Processors
• Out of Order Processors
• Register Renaming
• SIMD
• Multithreading
• Multiprocessors

Advanced Microarchitecture

Chapter 7 <173> Digital Design and Computer Architecture: ARM® Edition © 2015

• 10-20 stages typical

• Number of stages limited by:

– Pipeline hazards

– Sequencing overhead

– Power

– Cost

Deep Pipelining

Chapter 7 <174> Digital Design and Computer Architecture: ARM® Edition © 2015

• Decompose more complex instructions into a series of simple
instructions called micro-operations (micro-ops or µ-ops)

• At run-time, complex instructions are decoded into one or
more micro-ops

• Used heavily in CISC (complex instruction set computer)
architectures (e.g., x86)

• Used for some ARM instructions, for example:

Complex Op Micro-op Sequence
LDR R1, [R2], #4 LDR R1, [R2]

ADD R2, R2, #4

Without u-ops, would need 2nd write port on the register file

Micro-operations

Chapter 7 <175> Digital Design and Computer Architecture: ARM® Edition © 2015

• Allow for dense code (fewer memory accesses)

• Yet preserve simplicity of RISC hardware

• ARM strikes balance by choosing instructions that:

– Give better code density than pure RISC instruction sets
(such as MIPS)

– Enable more efficient decoding than CISC instruction sets
(such as x86)

Micro-operations

Chapter 7 <176> Digital Design and Computer Architecture: ARM® Edition © 2015

• Guess whether branch will be taken

– Backward branches are usually taken (loops)

– Consider history to improve guess

• Good prediction reduces fraction of branches
requiring a flush

Branch Prediction

Chapter 7 <177> Digital Design and Computer Architecture: ARM® Edition © 2015

• Ideal pipelined processor: CPI = 1
• Branch misprediction increases CPI
• Static branch prediction:

– Check direction of branch (forward or backward)
– If backward, predict taken
– Else, predict not taken

• Dynamic branch prediction:
– Keep history of last several hundred (or thousand)

branches in branch target buffer, record:
• Branch destination
• Whether branch was taken

Branch Prediction

Chapter 7 <178> Digital Design and Computer Architecture: ARM® Edition © 2015

MOV R1, #0 ; R1 = sum

MOV R0, #0 ; R0 = i

FOR ; for (i=0; i<10; i=i+1)

CMP R0, #10

BGE DONE

ADD R1, R1, R0 ; sum = sum + i

ADD R0, R0, #1

B FOR

DONE

Branch Prediction Example

Chapter 7 <179> Digital Design and Computer Architecture: ARM® Edition © 2015

• Remembers whether branch was taken the
last time and does the same thing

• Mispredicts first and last branch of loop

1-Bit Branch Predictor

Chapter 7 <180> Digital Design and Computer Architecture: ARM® Edition © 2015

Only mispredicts last branch of loop

strongly

taken

predict

taken

weakly

taken

predict

taken

weakly

not taken

predict

not taken

strongly

not taken

predict

not taken
taken taken taken

takentakentaken

taken

taken

2-Bit Branch Predictor

Chapter 7 <181> Digital Design and Computer Architecture: ARM® Edition © 2015

• Multiple copies of datapath execute multiple
instructions at once

• Dependencies make it tricky to issue multiple
instructions at once

CLK CLK CLK CLK

A
RD A1

A2
RD1A3

WD3
WD6

A4
A5
A6

RD4

RD2
RD5

Instruction

Memory

Register

File Data

Memory

A
L
U

s

PC

CLK

A1
A2

WD1
WD2

RD1
RD2

Superscalar

Chapter 7 <182> Digital Design and Computer Architecture: ARM® Edition © 2015

Ideal IPC: 2

Actual IPC: 2

Superscalar Example

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

R0

RF

R8
+

DM
IM

LDR

ADD

LDR R8, [R0, #40]

ADD R9, R1, R2

SUB R10, R1, R3

AND R11, R3, R4

ORR R12, R1, R5

STR R5, [R0, #80]

R9
R2

R1

+

RF
R3

R1

RF

R10
-

DM
IM

SUB

AND R11
R4

R3

&

RF
R5

R1

RF

R12
|

DM
IM

ORR

STR
80

R0

+ R5

Chapter 7 <183> Digital Design and Computer Architecture: ARM® Edition © 2015

Superscalar with Dependencies

Stall

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

R0

RF

R8
+

DM
IM

LDR
LDR R8, [R0, #40]

ADD R9, R8, R1

SUB R8, R2, R3

AND R10, R4, R8

STR R7, [R11, #80]

RF
R1

R8
ADD

RF
R1

R8

RF

R9
+

DM

RF
R8

R4

RF

R10
&

DM
IM

AND

IM
ORR

AND

SUB

|R6

R5
R11

RF
80

R11

RF

+

DM

STR

IM

R7

9

R3

R2

R3

R2

-
R8

ORR
ORR R11, R5, R6

IM

Ideal IPC: 2

Actual IPC: 6/5 = 1.2

Chapter 7 <184> Digital Design and Computer Architecture: ARM® Edition © 2015

• Looks ahead across multiple instructions

• Issues as many instructions as possible at once

• Issues instructions out of order (as long as no
dependencies)

• Dependencies:
– RAW (read after write): one instruction writes, later

instruction reads a register

– WAR (write after read): one instruction reads, later
instruction writes a register

– WAW (write after write): one instruction writes, later
instruction writes a register

Out of Order Processor

Chapter 7 <185> Digital Design and Computer Architecture: ARM® Edition © 2015

• Instruction level parallelism (ILP): number
of instruction that can be issued
simultaneously (average < 3)

• Scoreboard: table that keeps track of:

– Instructions waiting to issue

–Available functional units

–Dependencies

Out of Order Processor

Chapter 7 <186> Digital Design and Computer Architecture: ARM® Edition © 2015

LDR R8, [R0, #40]

ADD R9, R8, R1

SUB R8, R2, R3 Ideal IPC: 2

AND R10, R4, R8 Actual IPC: 6/4 = 1.5

ORR R11, R5, R6

STR R7, [R11, #80]

Out of Order Processor Example

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

R0

RF

R8
+

DM
IM

LDR
LDR R8, [R0, #40]

ADD R9, R8, R1

SUB R8, R2, R3

AND R10, R4, R8

STR R7, [R11, #80]

ORR
|R6

R5
R11

RF
80

R11

RF

+

DM

STR R7

ORR R11, R5, R6

IM

RF
R1

R8

RF

R9
+

DM
IM

ADD

SUB
-R3

R2
R8

two cycle latency
between load and
use of R8

RAW

WAR

RAW

RF
R8

R4

RF

&

DM

AND

IM

R10

RAW

Chapter 7 <187> Digital Design and Computer Architecture: ARM® Edition © 2015

LDR R8, [R0, #40]

ADD R9, R8, R1

SUB R8, R2, R3 Ideal IPC: 2

AND R10, R4, R8 Actual IPC: 6/3 = 2

ORR R11, R5, R6

STR R7, [R11, #80]

Register Renaming

Time (cycles)

1 2 3 4 5 6 7

RF
40

R0

RF

R8
+

DM
IM

LDR
LDR R8, [R0, #40]

ADD R9, R8, R1

SUB T0, R2, R3

AND R10, R4, T0

STR R7, [R11, #80]

SUB
-R3

R2
T0

RF
T0

R4

RF

&

DM

AND

R7

ORR R11, R5, R6

IM

RF
R1

R8

RF

R9
+

DM
IM

ADD

STR
+80

R11

RAW

R6

R5

|
ORR

2-cycle RAW

RAW

R10

R11

Chapter 7 <188> Digital Design and Computer Architecture: ARM® Edition © 2015

• Single Instruction Multiple Data (SIMD)
– Single instruction acts on multiple pieces of data at once

– Common application: graphics

– Perform short arithmetic operations (also called packed
arithmetic)

• For example, add eight 8-bit elements

SIMD

a0

0781516232431 Bit position

D0a1a2a3

b0 D1b1b2b3

a0 + b0 D2a1 + b1a2 + b2a3 + b3

+

a4a5a6a7

b4b5b6b7

a4 + b4a5 + b5a6 + b6a7 + b7

3239404748555663

Chapter 7 <189> Digital Design and Computer Architecture: ARM® Edition © 2015

• Multithreading

– Wordprocessor: thread for typing, spell checking,
printing

• Multiprocessors

– Multiple processors (cores) on a single chip

Advanced Architecture Techniques

Chapter 7 <190> Digital Design and Computer Architecture: ARM® Edition © 2015

• Process: program running on a computer

– Multiple processes can run at once: e.g., surfing
Web, playing music, writing a paper

• Thread: part of a program

– Each process has multiple threads: e.g., a word
processor may have threads for typing, spell
checking, printing

Threading: Definitions

Chapter 7 <191> Digital Design and Computer Architecture: ARM® Edition © 2015

• One thread runs at once

• When one thread stalls (for example, waiting
for memory):
– Architectural state of that thread stored

– Architectural state of waiting thread loaded into
processor and it runs

– Called context switching

• Appears to user like all threads running
simultaneously

Threads in Conventional Processor

Chapter 7 <192> Digital Design and Computer Architecture: ARM® Edition © 2015

• Multiple copies of architectural state

• Multiple threads active at once:
– When one thread stalls, another runs immediately

– If one thread can’t keep all execution units busy,
another thread can use them

• Does not increase instruction-level parallelism
(ILP) of single thread, but increases
throughput

Intel calls this “hyperthreading”

Multithreading

Chapter 7 <193> Digital Design and Computer Architecture: ARM® Edition © 2015

• Multiple processors (cores) with a method of
communication between them

• Types:
– Homogeneous: multiple cores with shared main

memory

– Heterogeneous: separate cores for different tasks (for
example, DSP and CPU in cell phone)

– Clusters: each core has own memory system

Multiprocessors

Chapter 7 <194> Digital Design and Computer Architecture: ARM® Edition © 2015

• Patterson & Hennessy’s: Computer
Architecture: A Quantitative Approach

• Conferences:
– www.cs.wisc.edu/~arch/www/

– ISCA (International Symposium on Computer
Architecture)

– HPCA (International Symposium on High Performance
Computer Architecture)

Other Resources

