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Chapter 7 :: Topics

• Introduction

• Performance Analysis

• Single-Cycle Processor

• Multicycle Processor

• Pipelined Processor

• Advanced Microarchitecture



Chapter 7 <3> Digital Design and Computer Architecture: ARM® Edition © 2015

• Microarchitecture: how to 
implement an architecture 
in hardware

• Processor:
– Datapath: functional blocks

– Control: control signals

Introduction
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• Multiple implementations for a single 
architecture:
– Single-cycle: Each instruction executes in a 

single cycle

– Multicycle: Each instruction is broken up into 
series of shorter steps

– Pipelined: Each instruction broken up into series 
of steps & multiple instructions execute at once

Microarchitecture
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• Program execution time

Execution Time = (#instructions)(cycles/instruction)(seconds/cycle)

• Definitions:
– CPI: Cycles/instruction
– clock period: seconds/cycle
– IPC: instructions/cycle = IPC

• Challenge is to satisfy constraints of:
– Cost
– Power
– Performance

Processor Performance
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• Consider subset of ARM instructions:
– Data-processing instructions: 

• ADD, SUB, AND, ORR

• with register and immediate Src2, but no shifts

– Memory instructions: 
• LDR, STR

• with positive immediate offset

– Branch instructions: 
• B

ARM Processor
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Determines everything about a processor:
– Architectural state:

• 16 registers (including PC)

• Status register

– Memory

Architectural State Elements
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• Datapath

• Control

Single-Cycle ARM Processor
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• Datapath

• Control

Single-Cycle ARM Processor
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• Datapath: start with LDR instruction

• Example:  LDR R1, [R2, #5]

LDR Rd, [Rn, imm12]

Single-Cycle ARM Processor
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STEP 1: Fetch instruction
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STEP 2: Read source operands from RF
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LDR Rd, [Rn, imm12]
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STEP 3: Extend the immediate

ExtImm
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STEP 4: Compute the memory address
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LDR Rd, [Rn, imm12]

STEP 5: Read data from memory and write it 
back to register file
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STEP 6: Determine address of next instruction
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PC can be source/destination of instruction

ExtImm
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PC can be source/destination of instruction

• Source: R15 must be available in Register File
– PC is read as the current PC plus 8
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PC can be source/destination of instruction

• Source: R15 must be available in Register File
– PC is read as the current PC plus 8

• Destination: Be able to write result to PC

ExtImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WE
PC1

0

PC'

In
s
tr 19:16

15:12

11:0

SrcB

ALUResult ReadData

SrcA

PCPlus4

CLK

A
LU

PCPlus8
R15+

4

RA1

Extend

 RegWritePCSrc ALUControl
1 1 00

Single-Cycle Datapath: Access to PC



Chapter 7 <21> Digital Design and Computer Architecture: ARM® Edition © 2015

Expand datapath to handle STR:
• Write data in Rd to memory

ExtImm
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Single-Cycle Datapath: STR

STR Rd, [Rn, imm12]
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With immediate Src2:
• Read from Rn and Imm8 (ImmSrc chooses the zero-extended Imm8

instead of Imm12)

• Write ALUResult to register file

• Write to Rd

Single-Cycle Datapath: Data-processing

ADD Rd, Rn, imm8
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With immediate Src2:
• Read from Rn and Imm8 (ImmSrc chooses the zero-extended Imm8

instead of Imm12)

• Write ALUResult to register file

• Write to Rd
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Chapter 7 <24> Digital Design and Computer Architecture: ARM® Edition © 2015

With register Src2:
• Read from Rn and Rm (instead of Imm8)

• Write ALUResult to register file

• Write to Rd

Single-Cycle Datapath: Data-processing

ADD Rd, Rn, Rm



Chapter 7 <25> Digital Design and Computer Architecture: ARM® Edition © 2015

With register Src2:
• Read from Rn and Rm (instead of Imm8)

• Write ALUResult to register file

• Write to Rd
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Single-Cycle Datapath: Data-processing
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Calculate branch target address: 
BTA = (ExtImm) + (PC + 8)

ExtImm = Imm24 << 2 and sign-extended

Single-Cycle Datapath: B
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Single-Cycle Datapath: ExtImm

ImmSrc1:0 ExtImm Description

00 {24’b0, Instr7:0} Zero-extended imm8

01 {20’b0, Instr11:0} Zero-extended imm12

10 {6{Instr23}, Instr23:0} Sign-extended imm24
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Single-Cycle ARM Processor

ExtImm
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Single-Cycle Control
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Single-Cycle Control

Sent directly 
to datapath



Chapter 7 <31> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control

Sent through
Conditional Logic
first, then to 
datapath

Sent directly 
to datapath
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Single-Cycle Control
• These signals change the 

state (PC, RF, Memory)

• If instruction shouldn’t 
execute, forced to 0

Sent through
Conditional Logic
first, then to 
datapath

Sent directly 
to datapath
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Single-Cycle Control

• FlagW1:0: Flag Write signal, 
asserted when ALUFlags
should be saved (i.e., on 
instruction with S=1)
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Single-Cycle Control

• FlagW1:0: Flag Write signal, 
asserted when ALUFlags
should be saved (i.e., on 
instruction with S=1)

• ADD, SUB update all flags 
(NZCV)

• AND, ORR only update NZ
flags
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Single-Cycle Control

• FlagW1:0: Flag Write signal, 
asserted when ALUFlags
should be saved (i.e., on 
instruction with S=1)

• ADD, SUB update all flags 
(NZCV)

• AND, ORR only update NZ
flags

• So, two bits needed:
FlagW1 = 1: NZ saved  
(ALUFlags3:2 saved)
FlagW0 = 1: CV saved 
(ALUFlags1:0 saved)
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Single-Cycle Control
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Single-Cycle Control: Decoder
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Submodules:
• Main Decoder
• ALU Decoder
• PC Logic

Single-Cycle Control: Decoder
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Submodules:
• Main Decoder
• ALU Decoder
• PC Logic

Single-Cycle Control: Decoder
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Single-Cycle Control: Decoder

Submodules:
• Main Decoder
• ALU Decoder
• PC Logic
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ALUControl1:0 Function

00 Add

01 Subtract

10 AND

11 OR

Review: ALU
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Review: ALU
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Single-Cycle Control: Decoder

Submodules:
• Main Decoder
• ALU Decoder
• PC Logic
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ALUOp Funct4:1 

(cmd)

Funct0

(S)

Type ALUControl1:0 FlagW1:0

0 X X Not DP 00 00

1 0100 0 ADD 00 00

1 11

0010 0 SUB 01 00

1 11

0000 0 AND 10 00

1 10

1100 0 ORR 11 00

1 10

Control Unit: ALU Decoder

• FlagW1 = 1: NZ (Flags3:2) should be saved
• FlagW0 = 1: CV (Flags1:0) should be saved 
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Single-Cycle Control: Decoder

Submodules:
• Main Decoder
• ALU Decoder
• PC Logic
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PCS = 1 if PC is written by an instruction or branch (B):

PCS = ((Rd == 15) & RegW) | Branch

Single-Cycle Control: PC Logic
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If instruction is executed:   PCSrc = PCS
Else PCSrc = 0 (i.e., PC = PC + 4) 
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Single-Cycle Control
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Single-Cycle Control: Cond. Logic
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Conditional Logic

Function: 
1. Check if instruction should execute (if not, force 

PCSrc, RegWrite, and MemWrite to 0)
2. Possibly update Status Register (Flags3:0)
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Conditional Logic

Function: 
1. Check if instruction should execute (if not, force 

PCSrc, RegWrite, and MemWrite to 0)
2. Possibly update Status Register (Flags3:0)
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Single-Cycle Control: Conditional Logic
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Conditional Logic: Conditional Execution

Depending on condition mnemonic (Cond3:0) and condition flags 
(Flags3:0) the instruction is executed (CondEx = 1)
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Depending on condition mnemonic (Cond3:0) and condition flags 
(Flags3:0) the instruction is executed (CondEx = 1)

Flags3:0 is the 
status register

Conditional Logic: Conditional Execution
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Cond3:0 Mnemonic Name CondEx

0000 EQ Equal 𝑍

0001 NE Not equal ҧ𝑍

0010 CS / HS Carry set / Unsigned higher or same 𝐶

0011 CC / LO Carry clear / Unsigned lower ҧ𝐶

0100 MI Minus / Negative 𝑁

0101 PL Plus / Positive of zero ഥ𝑁

0110 VS Overflow / Overflow set 𝑉

0111 VC No overflow / Overflow clear ത𝑉

1000 HI Unsigned higher ҧ𝑍𝐶

1001 LS Unsigned lower or same 𝑍 𝑂𝑅 ҧ𝐶

1010 GE Signed greater than or equal 𝑁⊕𝑉

1011 LT Signed less than 𝑁⊕𝑉

1100 GT Signed greater than ҧ𝑍(𝑁 ⊕ 𝑉)

1101 LE Signed less than or equal 𝑍 𝑂𝑅 (𝑁⊕ 𝑉)

1110 AL (or none) Always / unconditional ignored

Review: Condition Mnemonics
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Example: AND R1, R2, R3

Cond3:0=1110 (unconditional) => CondEx = 1

Flags3:0 = NZCV

Conditional Logic: Conditional Execution
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Example: EOREQ R5, R6, R7

Cond3:0=0000 (EQ): if Flags3:2=0100 => CondEx = 1 

Flags3:0 = NZCV

Conditional Logic: Conditional Execution
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Conditional Logic

Function: 
1. Check if instruction should execute (if not, force 

PCSrc, RegWrite, and MemWrite to 0)
2. Possibly update Status Register (Flags3:0)
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Flags3:0 updated (with ALUFlags3:0) if: 
• FlagW is 1 (i.e., the instruction’s S-bit is 1) AND 
• CondEx is 1 (the instruction should be executed)

Flags3:0 = NZCV

Conditional Logic: Update (Set) Flags
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Recall:
• ADD, SUB update 

all Flags 
• AND, OR update 

NZ only 
• So Flags status 

register has two 
write enables: 
FlagW1:0

Conditional Logic: Update (Set) Flags
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ALUOp Funct4:1 

(cmd)

Funct0

(S)

Type ALUControl1:0 FlagW1:0

0 X X Not DP 00 00

1 0100 0 ADD 00 00

1 11

0010 0 SUB 01 00

1 11

0000 0 AND 10 00

1 10

1100 0 ORR 11 00

1 10

Review: ALU Decoder

• FlagW1 = 1: NZ (Flags3:2) should be saved
• FlagW0 = 1: CV (Flags1:0) should be saved 
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Conditional Logic: Update (Set) Flags

All Flags 
updated

Example: SUBS R5, R6, R7
FlagW1:0 = 11 AND CondEx = 1 (unconditional) => FlagWrite1:0 = 11 
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Conditional Logic: Update (Set) Flags

Flags3:0 = NZCV

• Only Flags3:2

updated
• i.e., only NZ

Flags 
updated

Example: ANDS R7, R1, R3
FlagW1:0 = 10 AND CondEx = 1 (unconditional) => FlagWrite1:0 = 10 
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Example: ORR
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Example: ORR
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Extended Functionality: CMP
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Extended Functionality: CMP

No change to datapath
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Extended Functionality: CMP
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Extended Functionality: CMP

ALUOp Funct4:1 

(cmd)

Funct0

(S)

Type ALUControl1:0 FlagW1:0 NoWrite

0 X X Not DP 00 00 0

1 0100 0 ADD 00 00 0

1 11 0

0010 0 SUB 01 00 0

1 11 0

0000 0 AND 10 00 0

1 10 0

1100 0 ORR 11 00 0

1 10 0

1010 1 CMP 01 11 1
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Extended Functionality: Shifted Register

cond op cmd rn rd

Field Values

31:28 27:26 24:21 19:16 15:12

0

I

25

S

20

14 0 4 0 2 7

shshamt5

0

rm

411:7 6:5 3:0

5 012 12

Assembly Code

ADD R7, R2, R12, LSR #5
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No change to controller

Extended Functionality: Shifted Register
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Program Execution Time 

= (#instructions)(cycles/instruction)(seconds/cycle)

= # instructions x CPI x TC

Review: Processor Performance
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TC limited by critical path (LDR)

Single-Cycle Performance
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• Single-cycle critical path:
Tc1 = tpcq_PC + tmem + tdec + max[tmux + tRFread, tsext + 
tmux] + tALU + tmem + tmux + tRFsetup

• Typically, limiting paths are: 
– memory, ALU, register file 

– Tc1 = tpcq_PC + 2tmem + tdec + tRFread + tALU + 2tmux + 
tRFsetup

Single-Cycle Performance
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Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 40

Register setup tsetup 50

Multiplexer tmux 25

ALU tALU 120

Decoder tdec 70

Memory read tmem 200

Register file read tRFread 100

Register file setup tRFsetup 60

Tc1 = ?

Single-Cycle Performance Example
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Tc1 = tpcq_PC + 2tmem + tdec + tRFread + tALU + 2tmux + tRFsetup

= [50 + 2(200) + 70 + 100 + 120 + 2(25) + 60] ps

= 840 ps

Single-Cycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 40

Register setup tsetup 50

Multiplexer tmux 25

ALU tALU 120

Decoder tdec 70

Memory read tmem 200

Register file read tRFread 100

Register file setup tRFsetup 60
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Program with 100 billion instructions:

Execution Time = # instructions x CPI x TC

= (100 × 109)(1)(840  × 10-12 s)

= 84 seconds

Single-Cycle Performance Example
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• Single-cycle:
+ simple

- cycle time limited by longest instruction (LDR)

- separate memories for instruction and data

- 3 adders/ALUs

• Multicycle processor addresses these issues by 
breaking instruction into shorter steps
o shorter instructions take fewer steps

o can re-use hardware

o cycle time is faster

Multicycle ARM Processor
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• Single-cycle:
+ simple

- cycle time limited by longest instruction (LDR)

- separate memories for instruction and data

- 3 adders/ALUs

• Multicycle:
+ higher clock speed

+ simpler instructions run faster

+ reuse expensive hardware on multiple cycles

- sequencing overhead paid many times

Multicycle ARM Processor
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• Single-cycle:
+ simple

- cycle time limited by longest instruction (LDR)

- separate memories for instruction and data

- 3 adders/ALUs

• Multicycle:
+ higher clock speed

+ simpler instructions run faster

+ reuse expensive hardware on multiple cycles

- sequencing overhead paid many times

Multicycle ARM Processor

Same design steps 
as single-cycle: 
• first datapath
• then control
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Replace Instruction and Data memories with a 
single unified memory – more realistic

Multicycle State Elements
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STEP 1: Fetch instruction

Multicycle Datapath: Instruction Fetch

LDR Rd, [Rn, imm12]
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LDR Rd, [Rn, imm12]

Multicycle Datapath: LDR Register Read

STEP 2: Read source operands from RF
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LDR Rd, [Rn, imm12]

Multicycle Datapath: LDR Address

STEP 3: Compute the memory address
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LDR Rd, [Rn, imm12]

Multicycle Datapath: LDR Memory Read

STEP 4: Read data from memory
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LDR Rd, [Rn, imm12]

Multicycle Datapath: LDR Write Register

STEP 5: Write data back to register file



Chapter 7 <87> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Datapath: Increment PC

STEP 6: Increment PC
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Multicycle Datapath: Access to PC

PC can be read/written by instruction
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Multicycle Datapath: Access to PC

PC can be read/written by instruction
• Read: R15 (PC+8) available in Register File
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Multicycle Datapath: Read to PC (R15)

Example: ADD R1, R15, R2



Chapter 7 <91> Digital Design and Computer Architecture: ARM® Edition © 2015

Multicycle Datapath: Read to PC (R15)

Example: ADD R1, R15, R2

• R15 needs to be read as PC+8 from Register File (RF) in 2nd step

• So (also in 2nd step) PC + 8 is produced by ALU and routed to R15 
input of RF
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Multicycle Datapath: Read to PC (R15)

Example: ADD R1, R15, R2

• R15 needs to be read as PC+8 from Register File (RF) in 2nd step

• So (also in 2nd step) PC + 8 is produced by ALU and routed to R15 
input of RF

– SrcA = PC (which was already updated in step 1 to PC+4)

– SrcB = 4

– ALUResult = PC + 8 

• ALUResult is fed to R15 input port of RF in 2nd step (which is then 
routed to RD1 output of RF)
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Multicycle Datapath: Read to PC (R15)

Example: ADD R1, R15, R2

• R15 needs to be read as PC+8 from Register File (RF) in 2nd step

• So (also in 2nd step) PC + 8 is produced by ALU and routed to R15 
input of RF
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Multicycle Datapath: Access to PC

PC can be read/written by instruction
• Read: R15 (PC+8) available in Register File

• Write: Be able to write result of instruction to PC
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Multicycle Datapath: Write to PC (R15)

Example:  SUB R15, R8, R3
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Multicycle Datapath: Write to PC (R15)

Example:  SUB R15, R8, R3

• Result of instruction needs to be written to the PC register

• ALUResult already routed to the PC register, just assert PCWrite
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Multicycle Datapath: Write to PC (R15)

Example:  SUB R15, R8, R3

• Result of instruction needs to be written to the PC register

• ALUResult already routed to the PC register, just assert PCWrite
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Write data in Rn to memory

Multicycle Datapath: STR
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With immediate addressing (i.e., an 
immediate Src2), no additional changes 
needed for datapath

Multicycle Datapath: Data-processing
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With register addressing (register Src2):

Read from Rn and Rm

Multicycle Datapath: Data-processing



Chapter 7 <101> Digital Design and Computer Architecture: ARM® Edition © 2015

Calculate branch target address: 
BTA = (ExtImm) + (PC+8)
ExtImm = Imm24 << 2 and sign-extended

Multicycle Datapath: B
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Multicycle ARM Processor
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Multicycle Control

• First, discuss Decoder
• Then, Conditional Logic
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Multicycle Control: Decoder
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Multicycle Control: Decoder

Decoder
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Multicycle Control: Decoder

ALU Decoder and PC Logic same as single-cycle
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Multicycle Control: Instr Decoder

RegSrc0 = (Op == 102)
RegSrc1 = (Op == 012)
ImmSrc1:0 = Op

ImmSrc1:0

RegSrc1:0

Instr

Decoder
Op1:0

Instruction Op Funct5 Funct0 RegSrc0 RegSrc1 ImmSrc1:0

LDR 01 X 1 0 X 01

STR 01 X 0 0 1 01

DP immediate 00 1 X 0 X 00

DP register 00 0 X 0 0 00

B 10 X X 1 X 10
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Multicycle ARM Processor
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Multicycle Control: Main FSM

Decoder
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Main Controller FSM: Fetch
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Main Controller FSM: Decode
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Main Controller FSM: Address
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Main Controller FSM: Read Memory
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Multicycle ARM Processor
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Main Controller FSM: LDR
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Main Controller FSM: STR
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Main Controller FSM: Data-processing
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Main Controller FSM: Data-processing
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Multicycle Controller FSM
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Multicycle Control

• First, discuss Decoder
• Then, Conditional Logic
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Multicycle Control: Cond. Logic
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Single-Cycle Conditional Logic
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Multicycle Conditional Logic

Cond3:0

Flags3:2

CLK

CLK
ALUFlags3:0

Flags1:0

[3:2]

[1:0]

PCS

[1]

[0]

C
o

n
d
itio

n
 

C
h

e
c

k

FlagW1:0

PCWrite

MemWrite

RegWrite

C
o
n

d
E

x

MemW

RegW

NextPC

C
L
K

F
la

g
W

rite
1

:0

• PCWrite asserted in Fetch 
state

• ExecuteI/ExecuteR state:
CondEx asserts       
ALUFlags generated

• ALUWB state:
Flags updated
CondEx changes
PCWrite, RegWrite, and 
MemWrite don’t see 
change till new 
instruction (Fetch state)
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• Instructions take different number of cycles.

Multicycle Processor Performance
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Multicycle Controller FSM
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• Instructions take different number of cycles:
– 3 cycles:

– 4 cycles:

– 5 cycles:

Multicycle Processor Performance
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• Instructions take different number of cycles:
– 3 cycles: B

– 4 cycles: DP, STR

– 5 cycles: LDR

Multicycle Processor Performance
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• Instructions take different number of cycles:
– 3 cycles: B

– 4 cycles: DP, STR

– 5 cycles: LDR

• CPI is weighted average

• SPECINT2000 benchmark:
– 25% loads

– 10% stores

– 13% branches

– 52% R-type

Multicycle Processor Performance
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• Instructions take different number of cycles:
– 3 cycles: B

– 4 cycles: DP, STR

– 5 cycles: LDR

• CPI is weighted average

• SPECINT2000 benchmark:
– 25% loads

– 10% stores

– 13% branches

– 52% R-type

Average CPI = (0.13)(3) + (0.52 + 0.10)(4) + (0.25)(5) = 4.12

Multicycle Processor Performance
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Multicycle critical path:

• Assumptions:
• RF is faster than memory

• writing memory is faster than reading memory

Tc2 = tpcq + 2tmux + max(tALU + tmux, tmem) + tsetup

Multicycle Processor Performance
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Tc2 = ?

Multicycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 40

Register setup tsetup 50

Multiplexer tmux 25

ALU tALU 120

Decoder tdec 70

Memory read tmem 200

Register file read tRFread 100

Register file setup tRFsetup 60
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Tc2 = tpcq + 2tmux + max[tALU + tmux, tmem] + tsetup

= [40 + 2(25) + 200 + 50] ps = 340 ps

Multicycle Performance Example

Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 40

Register setup tsetup 50

Multiplexer tmux 25

ALU tALU 120

Decoder tdec 70

Memory read tmem 200

Register file read tRFread 100

Register file setup tRFsetup 60



Chapter 7 <133> Digital Design and Computer Architecture: ARM® Edition © 2015

For a program with 100 billion instructions 
executing on a multicycle ARM processor

– CPI = 4.12 cycles/instruction

– Clock cycle time: Tc2 = 340 ps

Execution Time = ?

Multicycle Performance Example
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For a program with 100 billion instructions 
executing on a multicycle ARM processor

– CPI = 4.12 cycles/instruction

– Clock cycle time: Tc2 = 340 ps

Execution Time = (# instructions) × CPI × Tc

= (100 × 109)(4.12)(340  × 10-12)

= 140 seconds

Multicycle Performance Example
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For a program with 100 billion instructions 
executing on a multicycle ARM processor

– CPI = 4.12 cycles/instruction

– Clock cycle time: Tc2 = 340 ps

Execution Time = (# instructions) × CPI × Tc

= (100 × 109)(4.12)(340  × 10-12)

= 140 seconds

This is slower than the single-cycle processor (84 sec.)

Multicycle Performance Example
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Review: Single-Cycle ARM Processor
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Review: Multicycle ARM Processor
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• Temporal parallelism

• Divide single-cycle processor into 5 stages:
– Fetch

– Decode

– Execute

– Memory

– Writeback

• Add pipeline registers between stages

Pipelined ARM Processor
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Single-Cycle vs. Pipelined

Time (ps)
Instr
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Instruction
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Pipelined Processor Abstraction

Time (cycles)

LDR R2, [R0, #40] RF 40

R0

RF
R2

+ DM

RF R10

R9

RF
R3

+ DM

RF R5

R1
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RF 20
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RF 42

R11
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R7
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ADD R3, R9, R10

SUB R4, R1, R5

AND R5, R12, R13

STR R6, [R1, #20]

ORR R7, R11, #42

1 2 3 4 5 6 7 8 9 10

ADD

IM
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IM
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LDR

SUB
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Single-Cycle & Pipelined Datapath
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• WA3 must arrive at same time as Result

• Register file written on falling edge of CLK

Corrected Pipelined Datapath
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Remove adder by using PCPlus4F after PC has been updated to PC+4

Optimized Pipelined Datapath
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• Same control unit as single-cycle processor
• Control delayed to proper pipeline stage

Pipelined Processor Control
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• When an instruction depends on result from 
instruction that hasn’t completed

• Types:

– Data hazard: register value not yet written back to 
register file

– Control hazard: next instruction not decided yet 
(caused by branch)

Pipeline Hazards
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Data Hazard

Time (cycles)
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• Insert NOPs in code at compile time

• Rearrange code at compile time

• Forward data at run time

• Stall the processor at run time

Handling Data Hazards
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• Insert enough NOPs for result to be ready

• Or move independent useful instructions forward

Compile-Time Hazard Elimination

Time (cycles)
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Data Forwarding

Time (cycles)
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SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM
ADD

ORR

SUB
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Data Forwarding

• Check if register read in Execute stage matches register 
written in Memory or Writeback stage 

• If so, forward result

Time (cycles)

ADD R1, R4, R5 RF R5

R4

RF
R1

+ DM

RF R3

R1

RF
R8

& DM

RF R1

R6

RF
R9

| DM

RF R7

R1

RF
R10

- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM
ADD

ORR

SUB
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Data Forwarding
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Data Forwarding
• Execute stage register matches Memory stage register?

Match_1E_M = (RA1E == WA3M)
Match_2E_M = (RA2E == WA3M)

• Execute stage register matches Writeback stage register?
Match_1E_W = (RA1E == WA3W)
Match_2E_W = (RA2E == WA3W)

• If it matches, forward result:

if          (Match_1E_M • RegWriteM) ForwardAE = 10; 
else if (Match_1E_W • RegWriteW) ForwardAE = 01; 
else                             ForwardAE = 00;
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Data Forwarding
• Execute stage register matches Memory stage register?

Match_1E_M = (RA1E == WA3M)
Match_2E_M = (RA2E == WA3M)

• Execute stage register matches Writeback stage register?
Match_1E_W = (RA1E == WA3W)
Match_2E_W = (RA2E == WA3W)

• If it matches, forward result:

if          (Match_1E_M • RegWriteM) ForwardAE = 10; 
else if (Match_1E_W • RegWriteW) ForwardAE = 01; 
else                             ForwardAE = 00;

ForwardBE same but with Match2E
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Stalling

Time (cycles)

LDR R1, [R4, #40] RF 40

R4

RF
R1

+ DM

RF R3

R1

RF
R8

& DM

RF R1

R6

RF
R9

| DM

RF R7

R1

RF
R10

- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM
LDR

ORR

SUB

Trouble!
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Stalling

Time (cycles)

LDR R1, [R4, #40] RF 40

R4

RF
R1

+ DM

RF R3

R1

RF
R8

& DM

RF R1

R6

RF
R9
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RF R7

R1
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AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND
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SUB

9

RF R3

R1
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ORR

Stall
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Stalling Hardware
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• Is either source register in the Decode stage the 
same as the one being written in the Execute 
stage?

Match_12D_E = (RA1D == WA3E) + (RA2D == WA3E)

• Is a LDR in the Execute stage AND Match_12D_E?

ldrstall = Match_12D_E • MemtoRegE

StallF = StallD = FlushE = ldrstall

Stalling Logic
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• B: 

– branch not determined until the Writeback stage 
of pipeline

– Instructions after branch fetched before branch 
occurs

– These 4 instructions must be flushed if branch 
happens

• Writes to PC (R15) similar

Control Hazards
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Control Hazards

Time (cycles)

B 3C RF RFDM

RF R3

R1

RF& DM

RF R1

R6

RF| DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM
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IM
B

ORR

20

24

28

2C

34
...

...

9

Flush
these

instructions

64 ADD R12, R3, R4 RF R4

R3

RF
R12+ DMIM

ADD

RF R7

R1

RF- DMIM
SUB

RF R8

R1

RF- DMIM
SUB

SUB R11, R1, R830

10

Branch misprediction penalty
• number of instruction flushed when branch is taken (4)

• May be reduced by determining BTA earlier
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Early Branch Resolution

• Determine BTA in Execute stage

– Branch misprediction penalty = 2 cycles

• Hardware changes
– Add a branch multiplexer before PC register to select BTA 

from ALUResultE

– Add BranchTakenE select signal for this multiplexer (only 
asserted if branch condition satisfied)

– PCSrcW now only asserted for writes to PC
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Pipelined processor with Early BTA
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Control Hazards with Early BTA

Time (cycles)

B 3C RF RFDM

RF R3

R1

RF& DM

RF R1
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AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND
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ORR
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24

28
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34
...

...

9

Flush
these

instructions

64 ADD R12, R3, R4 RF R4

R3
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R12+ DMIM
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SUB R11, R1, R830

10
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• PCWrPendingF = 1 if write to PC in Decode, Execute or 
Memory

PCWrPendingF = PCSrcD + PCSrcE + PCSrcM

• Stall Fetch if PCWrPendingF
StallF = ldrStallD + PCWrPendingF

• Flush Decode if PCWrPendingF OR PC is written in 
Writeback OR branch is taken

FlushD = PCWrPendingF + PCSrcW + BranchTakenE

• Flush Execute if branch is taken
FlushE = ldrStallD + BranchTakenE

• Stall Decode if ldrStallD (as before)
StallD = ldrStallD

Control Stalling Logic



Chapter 7 <164> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Pipelined Processor with Hazard Unit

E
x
tIm

m
E

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

Register

File

0

1

A RD

Data

Memory

WD

WE

1

0

PCF0

1

PC'

In
s
trD

19:16

15:12

23:0

25:20

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

 
ResultW

27:26

ImmSrcD

MemWriteD

MemtoRegD

ALUSrcD

RegWriteD

Op

Funct

Control

Unit

ALUFlags

CLK

ALUControlD

A
LU

PCPlus8D

R15

3:0

31:28

FlagWriteD

15:12 Rd

15

RA1D

RA2D

0 1

Extend

0

1

0

1

R
e
g

S
rc

D

CLK

In
s
trF

CLK

ALUOutM ALUOutW

00
01
10

00
01
10

WA3E WA3M WA3W

CLK CLK

MemWriteE

MemtoRegE

ALUSrcE

RegWriteE

ALUControlE
MemWriteM

MemtoRegM

RegWriteM

MemtoRegW

RegWriteW

BranchD

FlagsE

FlagWriteE

BranchE

CondE

C
o
n

d
E

x
E

Hazard Unit

S
ta

llF

S
ta

llD

F
lu

s
h

E

F
o
rw

a
rd

A
E

F
o
rw

a
rd

B
E

E
N

C
L

R

C
L

R
E

N

1

0

PCSrcD PCSrcE PCSrcM PCSrcW

F
lu

s
h

D

F
la

g
s'

Cond

Unit

BranchTakenE

R
e
g

W
rite

M

M
a
tc

h

R
e
g

W
rite

W

M
e
m

to
R

e
g
E

CLK



Chapter 7 <165> Digital Design and Computer Architecture: ARM® Edition © 2015

• SPECINT2000 benchmark:
– 25% loads

– 10% stores

– 13% branches

– 52% R-type

• Suppose:
– 40% of loads used by next instruction

– 50% of branches mispredicted

• What is the average CPI?

Pipelined Performance Example
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• SPECINT2000 benchmark:
– 25% loads

– 10% stores

– 13% branches

– 52% R-type

• Suppose:
– 40% of loads used by next instruction

– 50% of branches mispredicted

• What is the average CPI?
– Load CPI = 1 when not stalling, 2 when stalling

So, CPIlw = 1(0.6) + 2(0.4) = 1.4

– Branch CPI = 1 when not stalling, 3 when stalling

So, CPIbeq = 1(0.5) + 3(0.5) = 2

Average CPI = (0.25)(1.4) + (0.1)(1) + (0.13)(2) + (0.52)(1) = 1.23

Pipelined Performance Example
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• Pipelined processor critical path:

Tc3 = max [

tpcq + tmem + tsetup Fetch

2(tRFread + tsetup ) Decode

tpcq + 2tmux + tALU + tsetup Execute

tpcq + tmem + tsetup Memory

2(tpcq + tmux + tRFwrite) ] Writeback

Pipelined Performance
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Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 40

Register setup tsetup 50

Multiplexer tmux 25

ALU tALU 120

Memory read tmem 200

Register file read tRFread 100

Register file setup tRFsetup 60

Register file write tRFwrite 70

Cycle time: Tc3 = ?

Pipelined Performance Example
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Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 40

Register setup tsetup 50

Multiplexer tmux 25

ALU tALU 120

Memory read tmem 200

Register file read tRFread 100

Register file setup tRFsetup 60

Register file write tRFwrite 70

Cycle time: Tc3 = 2(tRFread + tsetup )

= 2[100 + 50] ps = 300 ps

Pipelined Performance Example
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Program with 100 billion instructions

Execution Time = (# instructions) × CPI × Tc

= (100 × 109)(1.23)(300  × 10-12)

= 36.9 seconds

Pipelined Performance Example
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Processor

Execution 
Time

(seconds)

Speedup

(single-cycle as baseline)

Single-cycle 84 1

Multicycle 140 0.6

Pipelined 36.9 2.28

Processor Performance Comparison
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• Deep Pipelining
• Micro-operations
• Branch Prediction
• Superscalar Processors
• Out of Order Processors
• Register Renaming
• SIMD
• Multithreading
• Multiprocessors

Advanced Microarchitecture
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• 10-20 stages typical

• Number of stages limited by:

– Pipeline hazards

– Sequencing overhead

– Power

– Cost

Deep Pipelining
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• Decompose more complex instructions into a series of simple 
instructions called micro-operations (micro-ops or µ-ops)

• At run-time, complex instructions are decoded into one or 
more micro-ops

• Used heavily in CISC (complex instruction set computer) 
architectures (e.g., x86)

• Used for some ARM instructions, for example:

Complex Op Micro-op Sequence
LDR R1, [R2], #4 LDR R1, [R2]

ADD R2, R2, #4

Without u-ops, would need 2nd write port on the register file

Micro-operations
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• Allow for dense code (fewer memory accesses)

• Yet preserve simplicity of RISC hardware

• ARM strikes balance by choosing instructions that:

– Give better code density than pure RISC instruction sets 
(such as MIPS)

– Enable more efficient decoding than CISC instruction sets 
(such as x86)

Micro-operations
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• Guess whether branch will be taken

– Backward branches are usually taken (loops)

– Consider history to improve guess

• Good prediction reduces fraction of branches 
requiring a flush 

Branch Prediction
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• Ideal pipelined processor: CPI = 1
• Branch misprediction increases CPI
• Static branch prediction:

– Check direction of branch (forward or backward)
– If backward, predict taken
– Else, predict not taken

• Dynamic branch prediction:
– Keep history of last several hundred (or thousand) 

branches in branch target buffer, record:
• Branch destination
• Whether branch was taken

Branch Prediction
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MOV R1, #0 ; R1 = sum

MOV R0, #0 ; R0 = i

FOR ; for (i=0; i<10; i=i+1)

CMP R0, #10

BGE DONE

ADD R1, R1, R0 ; sum = sum + i

ADD R0, R0, #1

B   FOR

DONE

Branch Prediction Example
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• Remembers whether branch was taken the 
last time and does the same thing

• Mispredicts first and last branch of loop

1-Bit Branch Predictor
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Only mispredicts last branch of loop

strongly

taken

predict

taken

weakly

taken

predict

taken

weakly

not taken

predict

not taken

strongly

not taken

predict

not taken
taken taken taken

takentakentaken

taken

taken

2-Bit Branch Predictor
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• Multiple copies of datapath execute multiple 
instructions at once

• Dependencies make it tricky to issue multiple 
instructions at once

CLK CLK CLK CLK

A
RD A1

A2
RD1A3

WD3
WD6

A4
A5
A6

RD4

RD2
RD5

Instruction

Memory

Register

File Data

Memory

A
L
U

s

PC

CLK

A1
A2

WD1
WD2

RD1
RD2

Superscalar
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Ideal IPC: 2

Actual IPC: 2

Superscalar Example

Time (cycles)

1 2 3 4 5 6 7 8
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R8
+

DM
IM

LDR

ADD

LDR R8, [R0, #40]

ADD R9, R1, R2

SUB R10, R1, R3

AND R11, R3, R4

ORR R12, R1, R5

STR R5, [R0, #80]

R9
R2

R1

+

RF
R3

R1

RF

R10
-

DM
IM

SUB

AND R11
R4

R3

&

RF
R5

R1

RF

R12
|

DM
IM

ORR

STR
80

R0

+ R5
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Superscalar with Dependencies

Stall

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

R0

RF

R8
+

DM
IM

LDR
LDR R8, [R0, #40]

ADD R9, R8, R1

SUB R8, R2, R3

AND R10, R4, R8

STR R7, [R11, #80]

RF
R1

R8
ADD

RF
R1

R8

RF

R9
+

DM

RF
R8

R4

RF

R10
&

DM
IM

AND

IM
ORR

AND

SUB

|R6

R5
R11

RF
80

R11

RF

+

DM

STR

IM

R7

9

R3

R2

R3

R2

-
R8

ORR
ORR R11, R5, R6

IM

Ideal IPC: 2

Actual IPC: 6/5 = 1.2
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• Looks ahead across multiple instructions

• Issues as many instructions as possible at once

• Issues instructions out of order (as long as no 
dependencies)

• Dependencies:
– RAW (read after write): one instruction writes, later 

instruction reads a register

– WAR (write after read): one instruction reads, later 
instruction writes a register

– WAW (write after write): one instruction writes, later 
instruction writes a register

Out of Order Processor
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• Instruction level parallelism (ILP): number 
of  instruction that can be issued 
simultaneously (average < 3)

• Scoreboard: table that keeps track of:

– Instructions waiting to issue

–Available functional units

–Dependencies

Out of Order Processor
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LDR R8, [R0, #40]

ADD R9, R8, R1

SUB R8, R2, R3 Ideal IPC: 2

AND R10, R4, R8 Actual IPC: 6/4 = 1.5

ORR R11, R5, R6

STR R7, [R11, #80]

Out of Order Processor Example

Time (cycles)

1 2 3 4 5 6 7 8
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R8
+

DM
IM

LDR
LDR R8, [R0, #40]

ADD R9, R8, R1

SUB R8, R2, R3

AND R10, R4, R8

STR R7, [R11, #80]

ORR
|R6

R5
R11

RF
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R11

RF

+

DM

STR R7

ORR R11, R5, R6

IM

RF
R1

R8
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R9
+
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SUB
-R3

R2
R8

two cycle latency
between load and
use of R8

RAW

WAR

RAW

RF
R8

R4

RF

&

DM

AND

IM

R10

RAW
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LDR R8, [R0, #40]

ADD R9, R8, R1

SUB R8, R2, R3 Ideal IPC: 2

AND R10, R4, R8 Actual IPC: 6/3 = 2

ORR R11, R5, R6

STR R7, [R11, #80]

Register Renaming

Time (cycles)

1 2 3 4 5 6 7
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R0

RF

R8
+

DM
IM

LDR
LDR R8, [R0, #40]

ADD R9, R8, R1

SUB T0, R2, R3

AND R10, R4, T0

STR R7, [R11, #80]

SUB
-R3

R2
T0

RF
T0

R4

RF

&

DM

AND

R7

ORR R11, R5, R6

IM

RF
R1

R8

RF

R9
+

DM
IM

ADD

STR
+80

R11

RAW

R6

R5

|
ORR

2-cycle RAW

RAW

R10

R11
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• Single Instruction Multiple Data (SIMD)
– Single instruction acts on multiple pieces of data at once

– Common application: graphics

– Perform short arithmetic operations (also called packed 
arithmetic)

• For example, add eight 8-bit elements

SIMD

a0

0781516232431 Bit position

D0a1a2a3

b0 D1b1b2b3

a0 + b0 D2a1 + b1a2 + b2a3 + b3

+

a4a5a6a7

b4b5b6b7

a4 + b4a5 + b5a6 + b6a7 + b7

3239404748555663
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• Multithreading

– Wordprocessor: thread for typing, spell checking, 
printing

• Multiprocessors

– Multiple processors (cores) on a single chip

Advanced Architecture Techniques
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• Process: program running on a computer

– Multiple processes can run at once: e.g., surfing 
Web, playing music, writing a paper

• Thread: part of a program

– Each process has multiple threads: e.g., a word 
processor may have threads for typing, spell 
checking, printing

Threading: Definitions
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• One thread runs at once

• When one thread stalls (for example, waiting 
for memory):
– Architectural state of that thread stored

– Architectural state of waiting thread loaded into 
processor and it runs

– Called context switching

• Appears to user like all threads running 
simultaneously

Threads in Conventional Processor
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• Multiple copies of architectural state

• Multiple threads active at once:
– When one thread stalls, another runs immediately

– If one thread can’t keep all execution units busy, 
another thread can use them

• Does not increase instruction-level parallelism 
(ILP) of single thread, but increases 
throughput 

Intel calls this “hyperthreading”

Multithreading
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• Multiple processors (cores) with a method of 
communication between them

• Types:
– Homogeneous: multiple cores with shared main 

memory

– Heterogeneous: separate cores for different tasks (for 
example, DSP and CPU in cell phone)

– Clusters: each core has own memory system

Multiprocessors
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• Patterson & Hennessy’s: Computer 
Architecture: A Quantitative Approach

• Conferences:
– www.cs.wisc.edu/~arch/www/

– ISCA (International Symposium on Computer 
Architecture)

– HPCA (International Symposium on High Performance 
Computer Architecture)

Other Resources


