

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 1

Computer Abstractions and Technology

The Computer Revolution

- Progress in computer technology
 - Underpinned by Moore's Law
- Makes novel applications feasible
 - Computers in automobiles
 - Cell phones
 - Human genome project
 - World Wide Web
 - Search Engines
 - Computers are pervasive

Classes of Computers

Personal computers

- General purpose, variety of software
- Subject to cost/performance tradeoff
- Server computers
 - Network based
 - High capacity, performance, reliability
 - Range from small servers to building sized

Classes of Computers

- Supercomputers
 - High-end scientific and engineering calculations
 - Highest capability but represent a small fraction of the overall computer market

Embedded computers

- Hidden as components of systems
- Stringent power/performance/cost constraints

The PostPC Era

The PostPC Era

Personal Mobile Device (PMD)

- Battery operated
- Connects to the Internet
- Hundreds of dollars
- Smart phones, tablets, electronic glasses
- Cloud computing
 - Warehouse Scale Computers (WSC)
 - Software as a Service (SaaS)
 - Portion of software run on a PMD and a portion run in the Cloud
 - Amazon and Google

What You Will Learn

- How programs are translated into the machine language
 - And how the hardware executes them
- The hardware/software interface
- What determines program performance
 - And how it can be improved
- How hardware designers improve performance
- What is parallel processing

Understanding Performance

- Algorithm
 - Determines number of operations executed
- Programming language, compiler, architecture
 - Determine number of machine instructions executed per operation
- Processor and memory system
 - Determine how fast instructions are executed
- I/O system (including OS)
 - Determines how fast I/O operations are executed

Eight Great Ideas

- Design for *Moore's Law*
- Use abstraction to simplify design
- Make the common case fast
- Performance via parallelism
- Performance via pipelining
- Performance via prediction
- Hierarchy of memories
- Dependability via redundancy

Below Your Program

- Application software
 - Written in high-level language
- System software

- Compiler: translates HLL code to machine code
- Operating System: service code
 - Handling input/output
 - Managing memory and storage
 - Scheduling tasks & sharing resources

Hardware

Processor, memory, I/O controllers

Levels of Program Code

High-level language

- Level of abstraction closer to problem domain
- Provides for productivity and portability
- Assembly language
 - Textual representation of instructions
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data

Chapter 1 — Computer Abstractions and Technology — 11

Components of a Computer

- Same components for all kinds of computer
 - Desktop, server, embedded

Input/output includes

- User-interface devices
 - Display, keyboard, mouse
- Storage devices
 - Hard disk, CD/DVD, flash
- Network adapters
 - For communicating with other computers

Touchscreen

- PostPC device
- Supersedes keyboard and mouse
- Resistive and Capacitive types
 - Most tablets, smart phones use capacitive
 - Capacitive allows multiple touches simultaneously

Opening the Box

Inside the Processor (CPU)

- Datapath: performs operations on data
- Control: sequences datapath, memory, ...
 - Cache memory
 - Small fast SRAM memory for immediate access to data

Inside the Processor

Apple A5

Chapter 1 — Computer Abstractions and Technology — 17

Abstractions

The BIG Picture

- Abstraction helps us deal with complexity
 Hide lower-level detail
- Instruction set architecture (ISA)
 - The hardware/software interface
- Application binary interface
 - The ISA plus system software interface
- Implementation
 - The details underlying and interface

A Safe Place for Data

- Volatile main memory
 - Loses instructions and data when power off
- Non-volatile secondary memory
 - Magnetic disk
 - Flash memory
 - Optical disk (CDROM, DVD)

Networks

- Communication, resource sharing, nonlocal access
- Local area network (LAN): Ethernet
- Wide area network (WAN): the Internet
- Wireless network: WiFi, Bluetooth

Technology Trends

<

- Electronics technology continues to evolve
 - Increased capacity and performance
 - Reduced cost

DRAM capacity

Year	Technology	Relative performance/cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit (IC)	900
1995	Very large scale IC (VLSI)	2,400,000
2013	Ultra large scale IC	250,000,000,000

Semiconductor Technology

- Silicon: semiconductor
- Add materials to transform properties:
 - Conductors
 - Insulators
 - Switch

Manufacturing ICs

Yield: proportion of working dies per wafer

Intel Core i7 Wafer

300mm wafer, 280 chips, 32nm technology (the smallest feature size on the die 32nm.)
Each chip is 20.7 x 10.5 mm

SRAM Cell Size Scaling

Transistor density continues to double every 2 years

Nonlinear relation to area and defect rate

- Wafer cost and area are fixed
- Defect rate determined by manufacturing process
- Die area determined by architecture and circuit design

Defining Performance

Which airplane has the best performance?

Response Time and Throughput

- Response time
 - How long it takes to do a task
- Throughput
 - Total work done per unit time
 - e.g., tasks/transactions/... per hour
 - How are response time and throughput affected by
 - Replacing the processor with a faster version?
 - Adding more processors?
 - We'll focus on response time for now...

Relative Performance

- Define Performance = 1/Execution Time
- "X is n time faster than Y"

Performanæ_x/Performanæ_y

= Execution time_Y/Execution time_X = n

Example: time taken to run a program

- 10s on A, 15s on B
- Execution Time_B / Execution Time_A = 15s / 10s = 1.5
- So A is 1.5 times faster than B

Measuring Execution Time

Elapsed time

- Total response time, including all aspects
 Processing, I/O, OS overhead, idle time
- Determines system performance
- CPU time
 - Time spent processing a given job
 - Discounts I/O time, other jobs' shares
 - Comprises user CPU time and system CPU time
 - Different programs are affected differently by CPU and system performance

CPU Clocking

Operation of digital hardware governed by a constant-rate clock

Clock period: duration of a clock cycle

e.g., 250ps = 0.25ns = 250×10⁻¹²s

Clock frequency (rate): cycles per second

e.g., 4.0GHz = 4000MHz = 4.0×10^{9} Hz


```
CPU Time = CPU Clock Cycles×Clock Cycle Time
```

CPU Clock Cycles Clock Rate

- Performance improved by
 - Reducing number of clock cycles
 - Increasing clock rate
 - Hardware designer must often trade off clock rate against cycle count

CPU Time Example

- Computer A: 2GHz clock, 10s CPU time
- Designing Computer B
 - Aim for 6s CPU time
 - Can do faster clock, but causes 1.2 × clock cycles
- How fast must Computer B clock be? (4GHz)

$$Clock Rate_{B} = \frac{Clock Cycles_{B}}{CPU Time_{B}} = \frac{1.2 \times Clock Cycles_{A}}{6s}$$

$$Clock Cycles_{A} = CPU Time_{A} \times Clock Rate_{A}$$

$$= 10s \times 2GHz = 20 \times 10^{9}$$

$$Clock Rate_{B} = \frac{1.2 \times 20 \times 10^{9}}{6s} = \frac{24 \times 10^{9}}{6s} = 4GHz$$

Instruction Count and CPI

Clock Cycles = Instruction Count × Cycles per Instruction

CPU Time = Instruction Count × CPI × Clock Cycle Time

Instruction Count \times CPI

Clock Rate

- Instruction Count for a program
 - Determined by program, ISA and compiler
- Average cycles per instruction
 - Determined by CPU hardware
 - If different instructions have different CPI
 - Average CPI affected by instruction mix

CPI Example

- Computer A: Cycle Time = 250ps, CPI = 2.0
- Computer B: Cycle Time = 500ps, CPI = 1.2
- Same ISA
- Which is faster, and by how much?

CPI in More Detail

If different instruction classes take different numbers of cycles

$$Clock Cycles = \sum_{i=1}^{n} (CPI_{i} \times Instruction Count_{i})$$

CPI Example

 Alternative compiled code sequences using instructions in classes A, B, C

Class	А	В	С
CPI for class	1	2	3
IC in sequence 1	2	1	2
IC in sequence 2	4	1	1

- Sequence 1: IC = 5
 - Clock Cycles
 = 2×1 + 1×2 + 2×3
 = 10
 - Avg. CPI = 10/5 = 2.0

- Sequence 2: IC = 6
 - Clock Cycles
 = 4×1 + 1×2 + 1×3
 = 9
 - Avg. CPI = 9/6 = 1.5

Performance Summary

The BIG Picture

Performance depends on

- Algorithm: affects IC, possibly CPI
- Programming language: affects IC, CPI
- Compiler: affects IC, CPI
- Instruction set architecture: affects IC, CPI, T_c

Understanding Program Performance

Hardware or software component	Affects what?	How?
Algorithm	Instruction count, possibly CPI	The algorithm determines the number of source program instructions executed and hence the number of processor instructions executed. The algorithm may also affect the CPI, by favoring slower or faster instructions. For example, if the algorithm uses more divides, it will tend to have a higher CPI.
Programming language	Instruction count, CPI	The programming language certainly affects the instruction count, since statements in the language are translated to processor instructions, which determine instruction count. The language may also affect the CPI because of its features; for example, a language with heavy support for data abstraction (e.g., Java) will require indirect calls, which will use higher CPI instructions.
Compiler	Instruction count, CPI	The efficiency of the compiler affects both the instruction count and average cycles per instruction, since the compiler determines the translation of the source language instructions into computer instructions. The compiler's role can be very complex and affect the CPI in varied ways.
Instruction set architecture	Instruction count, clock rate, CPI	The instruction set architecture affects all three aspects of CPU performance, since it affects the instructions needed for a function, the cost in cycles of each instruction, and the overall clock rate of the processor.

Power Trends

- Figure 1.16 shows the increase in clock rate and power of eight generations of Intel microprocessors over 30 years.
- Both clock rate and power increased rapidly for decades and then flattened off recently.
 - The reason they grew together is that they are correlated, and
- the reason for their recent slowing is that we have run into the practical power limit for cooling commodity microprocessors.

×1000

Power Trends

x30

Chapter 1 — Computer Abstractions and Technology — 41

 $5V \rightarrow 1V$

Power Trends

- For CMOS, the primary source of energy consumption is so-called dynamic energy—that is, energy that is consumed when transistors switch states from 0 to 1 and vice versa. The dynamic energy depends on the capacitive loading of each transistor and the voltage applied.
- The capacitive load per transistor is a function of both the number of transistors connected to an output (called the fanout) and the technology.

- With regard to Figure 1.16, how could clock rates grow by a factor of 1000 while power increased by only a factor of 30? Energy and thus power can be reduced by lowering the voltage, which occurred with each new generation of technology, and power is a function of the voltage squared.
- Typically, the voltage was reduced about 15% per generation. In 20 years, voltages have gone from 5 V to 1 V, which is why the increase in power is only 30 times.
- In CMOS IC technology, power is as follows:

Power density

Power Density

Power Density increase

Power density

Power Density

Power consumption

- Although power provides a limit to what we can cool, in the post-PC era the really valuable resource is energy. Battery life can trump performance in the personal mobile device, and
- the architects of warehouse scale computers try to reduce the costs of powering and cooling 100,000 servers as the costs are high at this scale.

Reducing Power

- Suppose a new CPU has
 - 85% of capacitive load of old CPU
 - 15% less voltage and 15% frequency reduction
- What is the impact on dynamic power?

$$\frac{P_{new}}{P_{old}} = \frac{C_{old} \times 0.85 \times (V_{old} \times 0.85)^2 \times F_{old} \times 0.85}{C_{old} \times {V_{old}}^2 \times F_{old}} = 0.85^4 = 0.52$$

- Hence, the new processor uses about half the power of the old processor.
- The power wall
 - We can't reduce voltage further
 - We can't remove more heat
- How else can we improve performance?

Uniprocessor Performance

Multiprocessors

- Rather than continuing to decrease the response time of one program running on the single processor, as of 2006 all desktop and server companies are shipping microprocessors with multiple processors per chip, where the benefit is often more on throughput than on response time.
- Multicore microprocessors
 - More than one processor per chip
- Requires explicitly parallel programming
 - Compare with instruction level parallelism
 - Hardware executes multiple instructions at once
 - Hidden from the programmer
 - Hard to do
 - Programming for performance
 - Load balancing
 - Optimizing communication and synchronization

SPEC CPU Benchmark

- Programs used to measure performance
 - Supposedly typical of actual workload
- Standard Performance Evaluation Corp (SPEC)
 - Develops benchmarks for CPU, I/O, Web, …

SPEC CPU2006

- Elapsed time to execute a selection of programs
 Negligible I/O, so focuses on CPU performance
- Normalize relative to reference machine
- Summarize as geometric mean of performance ratios
 - CINT2006 (integer) and CFP2006 (floating-point)

CINT2006 for Intel Core i7 920

Description	Name	Instruction Count x 10 ⁹	CPI	Clock cycle time (seconds x 10 ^{–9})	Execution Time (seconds)	Reference Time (seconds)	SPECratio
Interpreted string processing	perl	2252	0.60	0.376	508	9770	19.2
Block-sorting compression	bzip2	2390	0.70	0.376	629	9650	15.4
GNU C compiler	gcc	794	1.20	0.376	358	8050	22.5
Combinatorial optimization	mcf	221	2.66	0.376	221	9120	41.2
Go game (AI)	go	1274	1.10	0.376	527	10490	19.9
Search gene sequence	hmmer	2616	0.60	0.376	590	9330	15.8
Chess game (AI)	sjeng	1948	0.80	0.376	586	12100	20.7
Quantum computer simulation	libquantum	659	0.44	0.376	109	20720	190.0
Video compression	h264avc	3793	0.50	0.376	713	22130	31.0
Discrete event simulation library	omnetpp	367	2.10	0.376	290	6250	21.5
Games/path finding	astar	1250	1.00	0.376	470	7020	14.9
XML parsing	xalancbmk	1045	0.70	0.376	275	6900	25.1
Geometric mean	_	_	_		-	_	25.7

SPEC Power Benchmark

- Given the increasing importance of energy and power, SPEC added a benchmark to measure power. It reports power consumption of servers at different workload levels, divided into 10% increments, over a period of time.
 - Performance: ssj_ops/sec
 - Power: Watts (Joules/sec)

Overallssj_opsper Watt =
$$\left(\sum_{i=0}^{10} ssj_ops_i\right) / \left(\sum_{i=0}^{10} power_i\right)$$

- ssj_opsi is performance at each 10% increment and
- poweri is power consumed at each performance level.

SPECpower_ssj2008 for Xeon X5650

Target Load %	Performance (ssj_ops)	Average Power (Watts)	
100%	865,618	258	
90%	786,688	242	
80%	698,051	224	
70%	607,826	204	
60%	521,391	185	
50%	436,757	170	
40%	345,919	157	
30%	262,071	146	
20%	176,061	135	
10%	86,784	121	
0%	0	80	
Overall Sum	4,787,166	1,922	
Σ ssj_ops/ Σ power =		2,490	

Pitfall: Amdahl's Law

Improving an aspect of a computer and expecting a proportional improvement in overall performance

- Example: multiply accounts for 80s/100s
 - Suppose a program runs in 100 seconds on a computer, with multiply operations responsible for 80 seconds of this time. How much do I have to improve the speed of multiplication if I want my program to run five times faster?

$$20 = \frac{80}{n} + 20$$
 • Can't be done!

Corollary: make the common case fast

Fallacy: Low Power at Idle

- Look back at i7 power benchmark
 - At 100% load: 258W
 - At 50% load: 170W (66%)
 - At 10% load: 121W (47%)
- Google data center
 - Mostly operates at 10% 50% load
 - At 100% load less than 1% of the time
- Consider designing processors to make power proportional to load

Pitfall: MIPS as a Performance Metric

- MIPS: Millions of Instructions Per Second
 - Doesn't account for
 - Differences in ISAs between computers
 - Differences in complexity between instructions

CPI varies between programs on a given CPU

Concluding Remarks

- Cost/performance is improving
 - Due to underlying technology development
- Hierarchical layers of abstraction
 - In both hardware and software
- Instruction set architecture
 - The hardware/software interface
- Execution time: the best performance measure
- Power is a limiting factor
 - Use parallelism to improve performance

