
COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

ARM

Edition

Chapter 2

Instructions: Language

of the Computer

Chapter 2 — Instructions: Language of the Computer — 2

Instruction Set

◼ The repertoire of instructions of a
computer

◼ Different computers have different
instruction sets

◼ But with many aspects in common

◼ Early computers had very simple
instruction sets

◼ Simplified implementation

◼ Many modern computers also have simple
instruction sets

§
2
.1

 In
tro

d
u
c
tio

n

Chapter 2 — Instructions: Language of the Computer — 3

The ARMv8 Instruction Set

◼ A subset, called LEGv8, used as the example

throughout the book

◼ Commercialized by ARM Holdings

(www.arm.com)

◼ Large share of embedded core market

◼ Applications in consumer electronics, network/storage

equipment, cameras, printers, …

◼ Typical of many modern ISAs

◼ See ARM Reference Data tear-out card

http://www.mips.com/

Chapter 2 — Instructions: Language of the Computer — 4

Arithmetic Operations

◼ Add and subtract, three operands

◼ Two sources and one destination

ADD a, b, c // a gets b + c

◼ All arithmetic operations have this form

◼ Design Principle 1: Simplicity favours

regularity

◼ Regularity makes implementation simpler

◼ Simplicity enables higher performance at

lower cost

§
2
.2

 O
p
e
ra

tio
n
s
 o

f th
e
 C

o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 5

Arithmetic Example

◼ C code:

f = (g + h) - (i + j);

◼ Compiled LEGv8 code:

ADD t0, g, h // temp t0 = g + h
ADD t1, i, j // temp t1 = i + j
ADD f, t0, t1 // f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 6

Register Operands

◼ Arithmetic instructions use register
operands

◼ LEGv8 has a 32 × 64-bit register file
◼ Use for frequently accessed data

◼ 64-bit data is called a “doubleword”
◼ 31 x 64-bit general purpose registers X0 to X30

◼ 32-bit data called a “word”
◼ 31 x 32-bit general purpose sub-registers W0 to W30

◼ Design Principle 2: Smaller is faster
◼ c.f. main memory: millions of locations

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u
te

r H
a
rd

w
a
re

LEGv8 Registers

◼ X0 – X7: procedure arguments/results

◼ X8: indirect result location register

◼ X9 – X15: temporaries

◼ X16 – X17 (IP0 – IP1): may be used by linker as a

scratch register, other times as temporary register

◼ X18: platform register for platform independent code;

otherwise a temporary register

◼ X19 – X27: saved

◼ X28 (SP): stack pointer

◼ X29 (FP): frame pointer

◼ X30 (LR): link register (return address)

◼ XZR (register 31): the constant value 0

Chapter 2 — Instructions: Language of the Computer — 7

Chapter 2 — Instructions: Language of the Computer — 8

Register Operand Example

◼ C code:

f = (g + h) - (i + j);

◼ f, …, j in X19, X20, …, X23

◼ Compiled LEGv8 code:

ADD X9, X20, X21
ADD X10, X22, X23
SUB X19, X9, X10

Chapter 2 — Instructions: Language of the Computer — 9

Memory Operands

◼ Main memory used for composite data
◼ Arrays, structures, dynamic data

◼ To apply arithmetic operations
◼ Load values from memory into registers

◼ Store result from register to memory

◼ Memory is byte addressed
◼ Each address identifies an 8-bit byte

◼ LEGv8 does not require words to be aligned in
memory, except for instructions and the stack

Chapter 2 — Instructions: Language of the Computer — 10

Memory Operand Example

◼ C code:

A[12] = h + A[8];

◼ h in X21, base address of A in X22

◼ Compiled LEGv8 code:

◼ Index 8 requires offset of 64

LDUR X9,[X22,#64] // U for “unscaled”

ADD X9,X21,X9

STUR X9,[X22,#96]

Chapter 2 — Instructions: Language of the Computer — 11

Registers vs. Memory

◼ Registers are faster to access than
memory

◼ Operating on memory data requires loads
and stores

◼ More instructions to be executed

◼ Compiler must use registers for variables
as much as possible

◼ Only spill to memory for less frequently used
variables

◼ Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 12

Immediate Operands

◼ Constant data specified in an instruction

ADDI X22, X22, #4

◼ Design Principle 3: Make the common

case fast

◼ Small constants are common

◼ Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 13

Unsigned Binary Integers

◼ Given an n-bit number

0

0

1

1

2n

2n

1n

1n 2x2x2x2xx ++++= −

−

−

−

◼ Range: 0 to +2n – 1

◼ Example
◼ 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

◼ Using 32 bits

◼ 0 to +4,294,967,295

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e
rs

Chapter 2 — Instructions: Language of the Computer — 14

2s-Complement Signed Integers

◼ Given an n-bit number

0

0

1

1

2n

2n

1n

1n 2x2x2x2xx ++++−= −

−

−

−

◼ Range: –2n – 1 to +2n – 1 – 1

◼ Example
◼ 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

◼ Using 32 bits

◼ –2,147,483,648 to +2,147,483,647

Chapter 2 — Instructions: Language of the Computer — 15

2s-Complement Signed Integers

◼ Bit 31 is sign bit
◼ 1 for negative numbers

◼ 0 for non-negative numbers

◼ –(–2n – 1) can’t be represented

◼ Non-negative numbers have the same unsigned
and 2s-complement representation

◼ Some specific numbers
◼ 0: 0000 0000 … 0000

◼ –1: 1111 1111 … 1111

◼ Most-negative: 1000 0000 … 0000

◼ Most-positive: 0111 1111 … 1111

Chapter 2 — Instructions: Language of the Computer — 16

Signed Negation

◼ Complement and add 1

◼ Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2

−=+

−==+

◼ Example: negate +2

◼ +2 = 0000 0000 … 0010two

◼ –2 = 1111 1111 … 1101two + 1

= 1111 1111 … 1110two

Chapter 2 — Instructions: Language of the Computer — 17

Sign Extension

◼ Representing a number using more bits
◼ Preserve the numeric value

◼ Replicate the sign bit to the left
◼ c.f. unsigned values: extend with 0s

◼ Examples: 8-bit to 16-bit
◼ +2: 0000 0010 => 0000 0000 0000 0010

◼ –2: 1111 1110 => 1111 1111 1111 1110

◼ In LEGv8 instruction set
◼ LDURSB: sign-extend loaded byte

◼ LDURB: zero-extend loaded byte

Chapter 2 — Instructions: Language of the Computer — 18

Representing Instructions

◼ Instructions are encoded in binary

◼ Called machine code

◼ LEGv8 instructions

◼ Encoded as 32-bit instruction words

◼ Small number of formats encoding operation code

(opcode), register numbers, …

◼ Regularity!

§
2
.5

 R
e
p
re

s
e
n
tin

g
 In

s
tru

c
tio

n
s
 in

 th
e
 C

o
m

p
u
te

r

Chapter 2 — Instructions: Language of the Computer — 19

Hexadecimal

◼ Base 16

◼ Compact representation of bit strings

◼ 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100

1 0001 5 0101 9 1001 d 1101

2 0010 6 0110 a 1010 e 1110

3 0011 7 0111 b 1011 f 1111

◼ Example: eca8 6420

◼ 1110 1100 1010 1000 0110 0100 0010 0000

Chapter 2 — Instructions: Language of the Computer — 20

LEGv8 R-format Instructions

◼ Instruction fields

◼ opcode: operation code

◼ Rm: the second register source operand

◼ shamt: shift amount (00000 for now)

◼ Rn: the first register source operand

◼ Rd: the register destination

opcode Rm shamt Rn Rd

11 bits 5 bits 6 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 21

R-format Example

ADD X9,X20,X21

1112ten 21ten 0ten 20ten 9ten

10001011000two 10101two 000000two 10100two 01001two

1000 1011 0001 0101 0000 0010 1000 1001two =

8B15028916

opcode Rm shamt Rn Rd

11 bits 5 bits 6 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 22

LEGv8 D-format Instructions

◼ Load/store instructions
◼ Rn: base register

◼ address: constant offset from contents of base register (+/- 32
doublewords)

◼ Rt: destination (load) or source (store) register number

◼ Design Principle 3: Good design demands good
compromises
◼ Different formats complicate decoding, but allow 32-bit

instructions uniformly

◼ Keep formats as similar as possible

opcode op2 Rn Rt

11 bits 9 bits 2 bits 5 bits 5 bits

address

Chapter 2 — Instructions: Language of the Computer — 23

LEGv8 I-format Instructions

◼ Immediate instructions
◼ Rn: source register

◼ Rd: destination register

◼ Immediate field is zero-extended

opcode Rn Rd

10 bits 12 bits 5 bits 5 bits

immediate

Chapter 2 — Instructions: Language of the Computer — 24

Stored Program Computers

◼ Instructions represented in
binary, just like data

◼ Instructions and data stored
in memory

◼ Programs can operate on
programs
◼ e.g., compilers, linkers, …

◼ Binary compatibility allows
compiled programs to work
on different computers
◼ Standardized ISAs

The BIG Picture

Chapter 2 — Instructions: Language of the Computer — 25

Logical Operations

◼ Instructions for bitwise manipulation

Operation C Java LEGv8

Shift left << << LSL

Shift right >> >>> LSR

Bit-by-bit AND & & AND, ANDI

Bit-by-bit OR | | OR, ORI

Bit-by-bit NOT ~ ~ EOR, EORI

◼ Useful for extracting and inserting

groups of bits in a word

§
2
.6

 L
o
g
ic

a
l O

p
e
ra

tio
n
s

Chapter 2 — Instructions: Language of the Computer — 26

Shift Operations

◼ shamt: how many positions to shift

◼ Shift left logical

◼ Shift left and fill with 0 bits

◼ LSL by i bits multiplies by 2i

◼ Shift right logical

◼ Shift right and fill with 0 bits

◼ LSR by i bits divides by 2i (unsigned only)

opcode Rm shamt Rn Rd

11 bits 5 bits 6 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 27

AND Operations

◼ Useful to mask bits in a word

◼ Select some bits, clear others to 0

AND X9,X10,X11

00000000 00000000 00000000 00000000 00000000 00000000 00001101 11000000X10

X11

X9

00000000 00000000 00000000 00000000 00000000 00000000 00111100 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00001100 00000000

Chapter 2 — Instructions: Language of the Computer — 28

OR Operations

◼ Useful to include bits in a word

◼ Set some bits to 1, leave others unchanged

OR X9,X10,X11

00000000 00000000 00000000 00000000 00000000 00000000 00001101 11000000X10

X11

X9

00000000 00000000 00000000 00000000 00000000 00000000 00111100 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00111101 11000000

Chapter 2 — Instructions: Language of the Computer — 29

EOR Operations

◼ Differencing operation

◼ Set some bits to 1, leave others unchanged

EOR X9,X10,X12 // NOT operation

00000000 00000000 00000000 00000000 00000000 00000000 00001101 11000000X10

X12

X9

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111

11111111 11111111 11111111 11111111 11111111 11111111 11110010 00111111

Chapter 2 — Instructions: Language of the Computer — 30

Conditional Operations

◼ Branch to a labeled instruction if a condition is
true
◼ Otherwise, continue sequentially

◼ CBZ register, L1
◼ if (register == 0) branch to instruction labeled L1;

◼ CBNZ register, L1
◼ if (register != 0) branch to instruction labeled L1;

◼ B L1
◼ branch unconditionally to instruction labeled L1;

§
2
.7

 In
s
tru

c
tio

n
s
 fo

r M
a
k
in

g
 D

e
c
is

io
n
s

Chapter 2 — Instructions: Language of the Computer — 31

Compiling If Statements

◼ C code:

if (i==j) f = g+h;
else f = g-h;

◼ f, g, … in X22, X23, …

◼ Compiled LEGv8 code:
SUB X9,X22,X23
CBNZ X9,Else
ADD X19,X20,X21
B Exit

Else: SUB X9,X22,x23
Exit: … Assembler calculates addresses

Chapter 2 — Instructions: Language of the Computer — 32

Compiling Loop Statements

◼ C code:

while (save[i] == k) i += 1;

◼ i in x22, k in x24, address of save in x25

◼ Compiled LEGv8 code:
Loop: LSL X10,X22,#3

ADD X10,X10,X25
LDUR X9,[X10,#0]
SUB X11,X9,X24
CBNZ X11,Exit
ADDI X22,X22,#1
B Loop

Exit: …

Chapter 2 — Instructions: Language of the Computer — 33

Basic Blocks

◼ A basic block is a sequence of instructions

with

◼ No embedded branches (except at end)

◼ No branch targets (except at beginning)

◼ A compiler identifies basic

blocks for optimization

◼ An advanced processor

can accelerate execution

of basic blocks

Chapter 2 — Instructions: Language of the Computer — 34

More Conditional Operations

◼ Condition codes, set from arithmetic instruction with S-

suffix (ADDS, ADDIS, ANDS, ANDIS, SUBS, SUBIS)

◼ negative (N): result had 1 in MSB

◼ zero (Z): result was 0

◼ overlow (V): result overflowed

◼ carry (C): result had carryout from MSB

◼ Use subtract to set flags, then conditionally branch:
◼ B.EQ

◼ B.NE

◼ B.LT (less than, signed), B.LO (less than, unsigned)

◼ B.LE (less than or equal, signed), B.LS (less than or equal, unsigned)

◼ B.GT (greater than, signed), B.HI (greater than, unsigned)

◼ B.GE (greater than or equal, signed),

◼ B.HS (greater than or equal, unsigned)

Conditional Example

◼ if (a > b) a += 1;

◼ a in X22, b in X23

SUBS X9,X22,X23 // use subtract to make comparison

B.LTE Exit // conditional branch

ADDI X22,X22,#1

Exit:

Chapter 2 — Instructions: Language of the Computer — 35

Chapter 2 — Instructions: Language of the Computer — 36

Signed vs. Unsigned

◼ Signed comparison

◼ Unsigned comparison

◼ Example

◼ X22 = 1111 1111 1111 1111 1111 1111 1111 1111

◼ X23 = 0000 0000 0000 0000 0000 0000 0000 0001

◼ X22 < X23 # signed

◼ –1 < +1

◼ X22 > X23 # unsigned

◼ +4,294,967,295 > +1

Chapter 2 — Instructions: Language of the Computer — 37

Procedure Calling

◼ Steps required

1. Place parameters in registers X0 to X7

2. Transfer control to procedure

3. Acquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call (address in X30)

§
2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 38

Procedure Call Instructions

◼ Procedure call: jump and link

BL ProcedureLabel

◼ Address of following instruction put in X30

◼ Jumps to target address

◼ Procedure return: jump register

BR LR

◼ Copies LR to program counter

◼ Can also be used for computed jumps

◼ e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 39

Leaf Procedure Example

◼ C code:

long long int leaf_example (long long int
g, long long int h, long long int i, long
long int j)
{ long long int f;

f = (g + h) - (i + j);
return f;

}

◼ Arguments g, …, j in X0, …, X3

◼ f in X19 (hence, need to save $s0 on stack)

◼ LEGv8 code:
leaf_example:

SUBI SP,SP,#24

STUR X10,[SP,#16]

STUR X9,[SP,#8]

STUR X19,[SP,#0]

ADD X9,X0,X1

ADD X10,X2,X3

SUB X19,X9,X10

ADD X0,X19,XZR

LDUR X10,[SP,#16]

LDUR X9,[SP,#8]

LDUR X19,[SP,#0]

ADDI SP,SP,#24

BR LR

Chapter 2 — Instructions: Language of the Computer — 40

Leaf Procedure Example

Save X10, X9, X19 on stack

X9 = g + h

X10 = i + j

f = X9 – X10
copy f to return register

Resore X10, X9, X19 from stack

Return to caller

Local Data on the Stack

Chapter 2 — Instructions: Language of the Computer — 41

Register Usage

◼ X9 to X17: temporary registers

◼ Not preserved by the callee

◼ X19 to X28: saved registers

◼ If used, the callee saves and restores them

Chapter 2 — Instructions: Language of the Computer — 42

Chapter 2 — Instructions: Language of the Computer — 43

Non-Leaf Procedures

◼ Procedures that call other procedures

◼ For nested call, caller needs to save on the

stack:

◼ Its return address

◼ Any arguments and temporaries needed after

the call

◼ Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 44

Non-Leaf Procedure Example

◼ C code:

int fact (int n)
{

if (n < 1) return f;
else return n * fact(n - 1);

}

◼ Argument n in X0

◼ Result in X1

◼ LEGv8 code:
fact:

SUBI SP,SP,#16

STUR LR,[SP,#8]

STUR X0,[SP,#0]

SUBIS XZR,X0,#1

B.GE L1

ADDI X1,XZR,#1

ADDI SP,SP,#16

BR LR

L1: SUBI X0,X0,#1

BL fact

LDUR X0,[SP,#0]

LDUR LR,[SP,#8]

ADDI SP,SP,#16

MUL X1,X0,X1

BR LR

Chapter 2 — Instructions: Language of the Computer — 45

Leaf Procedure Example

Save return address and n on stack

compare n and 1

Else, set return value to 1

n = n - 1

if n >= 1, go to L1

call fact(n-1)

Pop stack, don’t bother restoring values

Return

Restore caller’s n

Restore caller’s return address

Pop stack

return n * fact(n-1)

return

Chapter 2 — Instructions: Language of the Computer — 46

Memory Layout

◼ Text: program code

◼ Static data: global
variables
◼ e.g., static variables in C,

constant arrays and strings

◼ Dynamic data: heap
◼ E.g., malloc in C, new in

Java

◼ Stack: automatic storage

Chapter 2 — Instructions: Language of the Computer — 47

Character Data

◼ Byte-encoded character sets

◼ ASCII: 128 characters

◼ 95 graphic, 33 control

◼ Latin-1: 256 characters

◼ ASCII, +96 more graphic characters

◼ Unicode: 32-bit character set

◼ Used in Java, C++ wide characters, …

◼ Most of the world’s alphabets, plus symbols

◼ UTF-8, UTF-16: variable-length encodings

§
2
.9

 C
o
m

m
u
n
ic

a
tin

g
 w

ith
 P

e
o
p
le

Chapter 2 — Instructions: Language of the Computer — 48

Byte/Halfword Operations

◼ LEGv8 byte/halfword load/store

◼ Load byte:

◼ LDURB Rt, [Rn, offset]

◼ Sign extend to 32 bits in rt

◼ Store byte:

◼ STURB Rt, [Rn, offset]

◼ Store just rightmost byte

◼ Load halfword:

◼ LDURH Rt, [Rn, offset]

◼ Sign extend to 32 bits in rt

◼ Store halfword:

◼ STURH Rt, [Rn, offset]

◼ Store just rightmost halfword

Chapter 2 — Instructions: Language of the Computer — 49

String Copy Example

◼ C code:

◼ Null-terminated string

void strcpy (char x[], char y[])
{ size_t i;

i = 0;
while ((x[i]=y[i])!='\0')
i += 1;

}

◼ LEGv8 code:
strcpy:

SUBI SP,SP,8 // push X19

STUR X19,[SP,#0]
ADD X19,XZR,XZR // i=0

L1: ADD X10,X19,X1 // X10 = addr of y[i]
LDURB X11,[X10,#0] // X11 = y[i]
ADD X12,X19,X0 // X12 = addr of x[i]
STURB X11,[X12,#0] // x[i] = y[i]
CBZ X11,L2 // if y[i] == 0 then exit
ADDI X19,X19,#1 // i = i + 1
B L1 // next iteration of loop

L2: LDUR X19,[SP,#0] // restore saved $s0
ADDI SP,SP,8 // pop 1 item from stack
BR LR // and return

Chapter 2 — Instructions: Language of the Computer — 50

String Copy Example

◼ Most constants are small

◼ 12-bit immediate is sufficient

◼ For the occasional 32-bit constant

MOVZ: move wide with zeros

MOVK: move with with keep

◼ Use with flexible second operand (shift)

Chapter 2 — Instructions: Language of the Computer — 51

0000 0000 0000 0000

32-bit Constants

MOVZ X9,255,LSL 16

§
2
.1

0
 L

E
G

v
8
 A

d
d
re

s
s
in

g
 fo

r 3
2

-B
it Im

m
e
d
ia

te
s
 a

n
d
 A

d
d
re

s
s
e
s

MOVK X9,255,LSL 0

0000 0000 0000 0000 0000 0000 1111 1111 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1111 1111 0000 0000 1111 1111

Branch Addressing

◼ B-type
◼ B 1000 // go to location 10000ten

◼ CB-type
◼ CBNZ X19, Exit // go to Exit if X19 != 0

◼ Both addresses are PC-relative

◼ Address = PC + offset (from instruction)

Chapter 2 — Instructions: Language of the Computer — 52

5 10000ten

6 bits 26 bits

181 Exit

8 bits 19 bits

19

5 bits

LEGv8 Addressing Summary

Chapter 2 — Instructions: Language of the Computer — 53

LEGv8 Encoding Summary

Chapter 2 — Instructions: Language of the Computer — 54

Chapter 2 — Instructions: Language of the Computer — 55

Synchronization

◼ Two processors sharing an area of memory

◼ P1 writes, then P2 reads

◼ Data race if P1 and P2 don’t synchronize

◼ Result depends of order of accesses

◼ Hardware support required

◼ Atomic read/write memory operation

◼ No other access to the location allowed between the

read and write

◼ Could be a single instruction

◼ E.g., atomic swap of register ↔ memory

◼ Or an atomic pair of instructions

§
2
.1

1
 P

a
ra

lle
lis

m
 a

n
d
 In

s
tru

c
tio

n
s
: S

y
n
c
h
ro

n
iz

a
tio

n

Chapter 2 — Instructions: Language of the Computer — 56

Synchronization in LEGv8

◼ Load exclusive register: LDXR

◼ Store exclusive register: STXR

◼ To use:
◼ Execute LDXR then STXR with same address

◼ If there is an intervening change to the address, store
fails (communicated with additional output register)

◼ Only use register instruction in between

Synchronization in LEGv8

◼ Example 1: atomic swap (to test/set lock variable)
again: LDXR X10,[X20,#0]

STXR X23,X9,[X20] // X9 = status

CBNZ X9, again

ADD X23,XZR,X10 // X23 = loaded value

◼ Example 2: lock

ADDI X11,XZR,#1 // copy locked value

again: LDXR X10,[X20,#0] // read lock

CBNZ X10, again // check if it is 0 yet

STXR X11, X9, [X20] // attempt to store

BNEZ X9,again // branch if fails

◼ Unlock:

STUR XZR, [X20,#0] // free lock

Chapter 2 — Instructions: Language of the Computer — 57

Chapter 2 — Instructions: Language of the Computer — 58

Translation and Startup

Many compilers produce

object modules directly

Static linking

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

Chapter 2 — Instructions: Language of the Computer — 59

Producing an Object Module

◼ Assembler (or compiler) translates program into
machine instructions

◼ Provides information for building a complete
program from the pieces
◼ Header: described contents of object module

◼ Text segment: translated instructions

◼ Static data segment: data allocated for the life of the
program

◼ Relocation info: for contents that depend on absolute
location of loaded program

◼ Symbol table: global definitions and external refs

◼ Debug info: for associating with source code

Chapter 2 — Instructions: Language of the Computer — 60

Linking Object Modules

◼ Produces an executable image

1. Merges segments

2. Resolve labels (determine their addresses)

3. Patch location-dependent and external refs

◼ Could leave location dependencies for

fixing by a relocating loader

◼ But with virtual memory, no need to do this

◼ Program can be loaded into absolute location

in virtual memory space

Chapter 2 — Instructions: Language of the Computer — 61

Loading a Program

◼ Load from image file on disk into memory

1. Read header to determine segment sizes

2. Create virtual address space

3. Copy text and initialized data into memory

◼ Or set page table entries so they can be faulted in

4. Set up arguments on stack

5. Initialize registers (including SP, FP)

6. Jump to startup routine

◼ Copies arguments to X0, … and calls main

◼ When main returns, do exit syscall

Chapter 2 — Instructions: Language of the Computer — 62

Dynamic Linking

◼ Only link/load library procedure when it is

called

◼ Requires procedure code to be relocatable

◼ Avoids image bloat caused by static linking of

all (transitively) referenced libraries

◼ Automatically picks up new library versions

Chapter 2 — Instructions: Language of the Computer — 63

Lazy Linkage

Indirection table

Stub: Loads routine ID,

Jump to linker/loader

Linker/loader code

Dynamically

mapped code

Chapter 2 — Instructions: Language of the Computer — 64

Starting Java Applications

Simple portable

instruction set for

the JVM

Interprets

bytecodes

Compiles

bytecodes of

“hot” methods

into native

code for host

machine

Chapter 2 — Instructions: Language of the Computer — 65

C Sort Example

◼ Illustrates use of assembly instructions
for a C bubble sort function

◼ Swap procedure (leaf)
void swap(long long int v[],
long long int k)
{
long long int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

◼ v in X0, k in X1, temp in X9

§
2
.1

3
 A

 C
 S

o
rt E

x
a
m

p
le

 to
 P

u
t It A

ll T
o
g
e
th

e
r

swap: LSL X10,X1,#3 // X10 = k * 8

ADD X10,X0,X10 // X10 = address of v[k]

LDUR X9,[X10,#0] // X9 = v[k]

LDUR X11,[X10,#8] // X11 = v[k+1]

STUR X11,[X10,#0] // v[k] = X11 (v[k+1])

STUR X9,[X10,#8] // v[k+1] = X9 (v[k])

BR LR // return to calling routine

Chapter 2 — Instructions: Language of the Computer — 66

The Procedure Swap

Chapter 2 — Instructions: Language of the Computer — 67

The Sort Procedure in C

◼ Non-leaf (calls swap)
void sort (long long int v[], size_t n)
{

size_t i, j;
for (i = 0; i < n; i += 1) {

for (j = i – 1;
j >= 0 && v[j] > v[j + 1];
j -= 1) {

swap(v,j);
}

}
}

◼ v in X0, n in X1, i in X19, j in X20

◼ Skeleton of outer loop:
◼ for (i = 0; i <n; i += 1) {

MOV X19,XZR // i = 0

for1tst:

CMP X19, X1 // compare X19 to X1 (i to n)

B.GE exit1 // go to exit1 if X19 ≥ X1 (i≥n)

(body of outer for-loop)

ADDI X19,X19,#1 // i += 1

B for1tst // branch to test of outer loop

exit1:

Chapter 2 — Instructions: Language of the Computer — 68

The Outer Loop

◼ Skeleton of inner loop:

◼ for (j = i − 1; j >= 0 && v[j] > v[j + 1]; j − = 1) {

SUBI X20, X19, #1 // j = i - 1

for2tst: CMP X20,XZR // compare X20 to 0 (j to 0)

B.LT exit2 // go to exit2 if X20 < 0 (j < 0)

LSL X10, X20, #3 // reg X10 = j * 8

ADD X11, X0, X10 // reg X11 = v + (j * 8)

LDUR X12, [X11,#0] // reg X12 = v[j]

LDUR X13, [X11,#8] // reg X13 = v[j + 1]

CMP X12, X13 // compare X12 to X13

B.LE exit2 // go to exit2 if X12 ≤ X13

MOV X0, X21 // first swap parameter is v

MOV X1, X20 // second swap parameter is j

BL swap // call swap

SUBI X20, X20, #1 // j –= 1

B for2tst // branch to test of inner loop

exit2:

Chapter 2 — Instructions: Language of the Computer — 69

The Inner Loop

◼ Preserve saved registers:
SUBI SP,SP,#40 // make room on stack for 5 regs

STUR LR,[SP,#32] // save LR on stack

STUR X22,[SP,#24] // save X22 on stack

STUR X21,[SP,#16] // save X21 on stack

STUR X20,[SP,#8] // save X20 on stack

STUR X19,[SP,#0] // save X19 on stack

MOV X21, X0 // copy parameter X0 into X21

MOV X22, X1 // copy parameter X1 into X22

◼ Restore saved registers:
exit1: LDUR X19, [SP,#0] // restore X19 from stack

LDUR X20, [SP,#8] // restore X20 from stack

LDUR X21,[SP,#16] // restore X21 from stack

LDUR X22,[SP,#24] // restore X22 from stack

LDUR X30,[SP,#32] // restore LR from stack

SUBI SP,SP,#40 // restore stack pointer

Chapter 2 — Instructions: Language of the Computer — 70

Preserving Registers

Chapter 2 — Instructions: Language of the Computer — 71

Effect of Compiler Optimization

0

0.5

1

1.5

2

2.5

3

none O1 O2 O3

Relative Performance

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

none O1 O2 O3

Clock Cycles

0

20000

40000

60000

80000

100000

120000

140000

none O1 O2 O3

Instruction count

0

0.5

1

1.5

2

none O1 O2 O3

CPI

Compiled with gcc for Pentium 4 under Linux

Chapter 2 — Instructions: Language of the Computer — 72

Effect of Language and Algorithm

0

0.5

1

1.5

2

2.5

3

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Bubblesort Relative Performance

0

0.5

1

1.5

2

2.5

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Quicksort Relative Performance

0

500

1000

1500

2000

2500

3000

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Quicksort vs. Bubblesort Speedup

Chapter 2 — Instructions: Language of the Computer — 73

Lessons Learnt

◼ Instruction count and CPI are not good

performance indicators in isolation

◼ Compiler optimizations are sensitive to the

algorithm

◼ Java/JIT compiled code is significantly

faster than JVM interpreted

◼ Comparable to optimized C in some cases

◼ Nothing can fix a dumb algorithm!

Chapter 2 — Instructions: Language of the Computer — 74

Arrays vs. Pointers

◼ Array indexing involves

◼ Multiplying index by element size

◼ Adding to array base address

◼ Pointers correspond directly to memory

addresses

◼ Can avoid indexing complexity

§
2
.1

4
 A

rra
y
s
 v

e
rs

u
s
 P

o
in

te
rs

Chapter 2 — Instructions: Language of the Computer — 75

Example: Clearing an Array

clear1(int array[], int size) {
int i;
for (i = 0; i < size; i += 1)
array[i] = 0;

}

clear2(int *array, int size) {
int *p;
for (p = &array[0]; p < &array[size];

p = p + 1)
*p = 0;

}

MOV X9,XZR // i = 0

loop1: LSL X10,X9,#3 // X10 = i * 8

ADD X11,X0,X10 // X11 = address

// of array[i]

STUR XZR,[X11,#0]

// array[i] = 0

ADDI X9,X9,#1 // i = i + 1

CMP X9,X1 // compare i to

// size

B.LT loop1 // if (i < size)

// go to loop1

MOV X9,X0 // p = address of

// array[0]

LSL X10,X1,#3 // X10 = size * 8

ADD X11,X0,X10 // X11 = address

// of array[size]

loop2: STUR XZR,0[X9,#0]

// Memory[p] = 0

ADDI X9,X9,#8 // p = p + 8

CMP X9,X11 // compare p to <

// &array[size]

B.LT loop2 // if (p <

// &array[size])

// go to loop2

Chapter 2 — Instructions: Language of the Computer — 76

Comparison of Array vs. Ptr

◼ Multiply “strength reduced” to shift

◼ Array version requires shift to be inside

loop

◼ Part of index calculation for incremented i

◼ c.f. incrementing pointer

◼ Compiler can achieve same effect as

manual use of pointers

◼ Induction variable elimination

◼ Better to make program clearer and safer

Chapter 2 — Instructions: Language of the Computer — 77

ARM & MIPS Similarities

◼ ARM: the most popular embedded core

◼ Similar basic set of instructions to MIPS

§
2
.1

6
 R

e
a
l S

tu
ff: A

R
M

 In
s
tru

c
tio

n
s

ARM MIPS

Date announced 1985 1985

Instruction size 32 bits 32 bits

Address space 32-bit flat 32-bit flat

Data alignment Aligned Aligned

Data addressing modes 9 3

Registers 15 × 32-bit 31 × 32-bit

Input/output Memory

mapped

Memory

mapped

Chapter 2 — Instructions: Language of the Computer — 78

Instruction Encoding

Chapter 2 — Instructions: Language of the Computer — 79

The Intel x86 ISA

◼ Evolution with backward compatibility

◼ 8080 (1974): 8-bit microprocessor

◼ Accumulator, plus 3 index-register pairs

◼ 8086 (1978): 16-bit extension to 8080

◼ Complex instruction set (CISC)

◼ 8087 (1980): floating-point coprocessor

◼ Adds FP instructions and register stack

◼ 80286 (1982): 24-bit addresses, MMU

◼ Segmented memory mapping and protection

◼ 80386 (1985): 32-bit extension (now IA-32)

◼ Additional addressing modes and operations

◼ Paged memory mapping as well as segments

§
2
.1

7
 R

e
a
l S

tu
ff: x

8
6
 In

s
tru

c
tio

n
s

Chapter 2 — Instructions: Language of the Computer — 80

The Intel x86 ISA

◼ Further evolution…
◼ i486 (1989): pipelined, on-chip caches and FPU

◼ Compatible competitors: AMD, Cyrix, …

◼ Pentium (1993): superscalar, 64-bit datapath
◼ Later versions added MMX (Multi-Media eXtension)

instructions

◼ The infamous FDIV bug

◼ Pentium Pro (1995), Pentium II (1997)
◼ New microarchitecture (see Colwell, The Pentium Chronicles)

◼ Pentium III (1999)
◼ Added SSE (Streaming SIMD Extensions) and associated

registers

◼ Pentium 4 (2001)
◼ New microarchitecture

◼ Added SSE2 instructions

Chapter 2 — Instructions: Language of the Computer — 81

The Intel x86 ISA

◼ And further…
◼ AMD64 (2003): extended architecture to 64 bits

◼ EM64T – Extended Memory 64 Technology (2004)
◼ AMD64 adopted by Intel (with refinements)

◼ Added SSE3 instructions

◼ Intel Core (2006)
◼ Added SSE4 instructions, virtual machine support

◼ AMD64 (announced 2007): SSE5 instructions
◼ Intel declined to follow, instead…

◼ Advanced Vector Extension (announced 2008)
◼ Longer SSE registers, more instructions

◼ If Intel didn’t extend with compatibility, its
competitors would!
◼ Technical elegance ≠ market success

Chapter 2 — Instructions: Language of the Computer — 82

Basic x86 Registers

Chapter 2 — Instructions: Language of the Computer — 83

Basic x86 Addressing Modes

◼ Two operands per instruction

Source/dest operand Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

◼ Memory addressing modes

◼ Address in register

◼ Address = Rbase + displacement

◼ Address = Rbase + 2scale × Rindex (scale = 0, 1, 2, or 3)

◼ Address = Rbase + 2scale × Rindex + displacement

Chapter 2 — Instructions: Language of the Computer — 84

x86 Instruction Encoding

◼ Variable length

encoding

◼ Postfix bytes specify

addressing mode

◼ Prefix bytes modify

operation

◼ Operand length,

repetition, locking, …

Chapter 2 — Instructions: Language of the Computer — 85

Implementing IA-32

◼ Complex instruction set makes

implementation difficult

◼ Hardware translates instructions to simpler

microoperations

◼ Simple instructions: 1–1

◼ Complex instructions: 1–many

◼ Microengine similar to RISC

◼ Market share makes this economically viable

◼ Comparable performance to RISC

◼ Compilers avoid complex instructions

Chapter 2 — Instructions: Language of the Computer — 86

Fallacies

◼ Powerful instruction higher performance

◼ Fewer instructions required

◼ But complex instructions are hard to implement

◼ May slow down all instructions, including simple ones

◼ Compilers are good at making fast code from simple

instructions

◼ Use assembly code for high performance

◼ But modern compilers are better at dealing with

modern processors

◼ More lines of code more errors and less

productivity

§
2
.1

9
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

Chapter 2 — Instructions: Language of the Computer — 87

Fallacies

◼ Backward compatibility instruction set

doesn’t change

◼ But they do accrete more instructions

x86 instruction set

Chapter 2 — Instructions: Language of the Computer — 88

Pitfalls

◼ Sequential words are not at sequential

addresses

◼ Increment by 4, not by 1!

◼ Keeping a pointer to an automatic variable

after procedure returns

◼ e.g., passing pointer back via an argument

◼ Pointer becomes invalid when stack popped

Chapter 2 — Instructions: Language of the Computer — 89

Concluding Remarks

◼ Design principles

1. Simplicity favors regularity

2. Smaller is faster

3. Make the common case fast

4. Good design demands good compromises

◼ Layers of software/hardware

◼ Compiler, assembler, hardware

◼ LEGv8: typical of RISC ISAs

◼ c.f. x86

§
2
.2

0
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

Chapter 2 — Instructions: Language of the Computer — 90

Concluding Remarks

◼ Additional ARMv8 features:

◼ Flexible second operand

◼ Additional addressing modes

◼ Conditional instructions (e.g. CSET, CINC)

