

William Stallings Computer Organization and Architecture $10^{\text {th }}$ Edition

The Decimal System

- System based on decimal digits ($0,1,2,3,4,5,6,7,8,9$) to represent numbers
- For example the number 83 means eight tens plus three:

$$
83=(8 * 10)+3
$$

- The number 4728 means four thousands, seven hundreds, two tens, plus eight:

$$
4728=(4 * 1000)+(7 * 100)+(2 * 10)+8
$$

- The decimal system is said to have a base, or radix, of 10. This means that each digit in the number is multiplied by 10 raised to a power corresponding to that digit's position:

$$
\begin{gathered}
83=\left(8 * 10^{1}\right)+\left(3 * 10^{0}\right) \\
4728=\left(4 * 10^{3}\right)+\left(7 * 10^{2}\right)+\left(2 * 10^{1}\right)+\left(8 * 10^{0}\right)
\end{gathered}
$$

Decimal Fractions

- The same principle holds for decimal fractions, but negative powers of 10 are used. Thus, the decimal fraction 0.256 stands for 2 tenths plus 5 hundredths plus 6 thousandths:

$$
0.256=\left(2 * 10^{-1}\right)+\left(5 * 10^{-2}\right)+\left(6 * 10^{-3}\right)
$$

- A number with both an integer and fractional part has digits raised to both positive and negative powers of 10 :

$$
\begin{aligned}
442.256 & =\left(4 * 10^{2}\right)+\left(4+10^{1}\right)+\left(2 * 10^{0}\right)+\left(2 * 10^{-1}\right)+\left(5 * 10^{-2}\right) \\
& +\left(6 * 10^{-3}\right)
\end{aligned}
$$

- Most significant digit
- The leftmost digit (carries the highest value)
- Least significant digit
- The rightmost digit

Table 9.1
 Positional Interpretation of a Decimal Number

4	7	2	2	5	6
100 s	10 s	1 s	tenths	hundredths	thousandths
10^{2}	10^{1}	10^{0}	10^{-1}	10^{-2}	10^{-3}
position 2	position 1	position 0	position -1	position -2	position -3

Positional Number Systems

- Each number is represented by a string of digits in which each digit position i has an associated weight r^{i}, where r is the radix, or base, of the number system.
- The general form of a number in such a system with radix r is

$$
\left(\ldots a_{3} a_{2} a_{1} a_{0} \cdot a_{-1} a_{-2} a_{-3} \ldots\right)_{r}
$$

where the value of any digit a_{i} is an integer in the range $0 \leq a_{i}<r$. The dot between a_{0} and a_{-1} is called the radix point.

Table 9.2

Positional Interpretation of a Number in Base 7

Position	4	3	2	1	0	-1
Value in exponential form	74	73	72	71	70	$7-1$
Decimal value	2401	343	49	7	1	$1 / 7$

The Binary System

- Only two digits, l and 0
- Represented to the base 2
- The digits l and 0 in binary notation have the same meaning as in decimal notation:

$$
\begin{aligned}
& 0_{2}=0_{10} \\
& 1_{2}=1_{10}
\end{aligned}
$$

- To represent larger numbers each digit in a binary number has a value depending on its position:

$$
\begin{gathered}
10_{2}=\left(1 * 2^{1}\right)+\left(0 * 2^{0}\right)=2_{10} \\
11_{2}=\left(1 * 2^{1}\right)+\left(1 * 2^{0}\right)=3_{10} \\
100_{2}=\left(1 * 2^{2}\right)+\left(0 * 2^{1}\right)+\left(0 * 2^{0}\right)=4_{10}
\end{gathered}
$$

and so on. Again, fractional values are represented with negative powers of the radix:

$$
1001.101=2^{3}+2^{0}+2^{-1}+2^{-3}=9.625_{10}
$$

Binary notation to decimal notation:

- Multiply each binary digit by the appropriate power of 2 and add the results

Decimal notation to binary notation:

- Integer and fractional parts are handled separately

Converting Between Binary and Decimal

For the integer part, recall that in binary notation, an integer represented by

$$
b_{m-1} b_{m-2} \cdots b_{2} b_{1} b_{0} \quad b_{i}=0 \text { or } 1
$$

has the value

$$
\left(b_{m-1} * 2^{m-1}\right)+\left(b_{m-2} * 2^{m-2}\right)+\ldots+\left(b_{1} * 2^{l}\right)+b_{0}
$$

Suppose it is required to convert a decimal integer N into binary form. If we divide N by 2, in the decimal system, and obtain a quotient N_{1} and a remainder R_{0}, we may write

$$
N=2 * N_{1}+R_{0} \quad R_{0}=0 \text { or } 1
$$

Next, we divide the quotient N_{1} by 2. Assume that the new quotient is N_{2} and the new remainder R_{l}. Then

$$
N_{1}=2 * N_{2}+R_{1} \quad R_{1}=0 \text { or } 1
$$

so that

$$
N=2\left(2 N_{2}+R_{1}\right)+R_{0}=\left(N_{2} * 2^{2}\right)+\left(R_{1} * 2^{1}\right)+R_{0}
$$

If next

$$
N_{2}=2 N_{3}+R_{2}
$$

we have

$$
N=\left(N_{3} * 2^{3}\right)+\left(R_{2} * 2^{2}\right)+\left(R_{1} * 2^{l}\right)+R_{0}
$$

Because $N>N_{l}>N_{2} \ldots$, continuing this sequence will eventually produce a quotient $N_{m-1}=1$ (except for the decimal integers 0 and 1 , whose binary equivalents are 0 and 1 , respectively) and a remainder R_{m-2}, which is 0 or l.Then

$$
N=\left(1 * 2^{m-1}\right)+\left(R_{m-2} * 2^{m-2}\right)+\ldots+\left(R_{2} * 2^{2}\right)+\left(R_{1} * 2^{l}\right)+R_{0}
$$

which is the binary form of N. Hence, we convert from base 10 to base 2 by repeated divisions by 2 . The remainders and the final quotient, 1 , give us, in order

Integers

 of increasing significance, the binary digits of N.
(a) 11_{10}

(b) 21_{10}

Figure 9.1 Examples of Converting from Decimal Notation to Binary Notation for Integers

For the fractional part, recall that in binary notation, a number with a value between 0 and l is represented by

Fractions

$$
0 . b_{-1} b_{-2} b_{-3} \cdots \quad b_{i}=0 \text { or } 1
$$

and has the value

$$
\left(b_{-1} * 2^{-1}\right)+\left(b_{-2} * 2^{-2}\right)+\left(b_{-3} * 2^{-3}\right) \ldots
$$

This can be rewritten as

$$
2^{-1} *\left(b_{-1}+2^{-1 *}\left(b_{-2}+2^{-1 *}\left(b_{-3}+\ldots\right) \ldots\right)\right)
$$

Suppose we want to convert the number $F(0<F<1)$ from decimal to binary notation. We

$$
F=2^{-1} *\left(b_{-1}+2^{-1 *}\left(b_{-2}+2^{-1 *}\left(b_{-3}+\ldots\right) \ldots\right)\right)
$$

If we multiply F by 2, we obtain,

$$
2 * F=b_{-1}+2^{-1 *}\left(b_{-2}+2^{-1} *\left(b_{-3}+\ldots\right) \ldots\right)
$$

From this equation, we see that the integer part of ($2 * F$), which must be either 0 or 1 because

Fractions

 $0<F<1$, is simply b_{-1}. So we can say $(2 * F)=b_{-1}+$ F_{1}, where $0<F_{1}<1$ and where$F_{1}=2-1 *\left(b_{-2}+2^{-1} *\left(b_{-3}+2^{-1} *\left(b_{-4}+\ldots\right) \ldots\right)\right)$
To find b_{-2}, we repeat the process. At each step, the fractional part of the number from the previous step is multiplied by 2 . The digit to the left of the decimal point in the product will be 0 or l and contributes to the
 binary representation, starting with the most significant digit. The fractional part of the product is used as the multiplicand in the next step.

Figure 9.2

Examples of Converting from
 Decimal Notation To

Binary Notation For Fractions
(a) $0.81_{10}=0.110011_{2}$ (approximately)

(b) $0.25_{10}=0.01_{2}($ exactly)

Hexadecimal Notation

■ Binary digits are grouped into sets of four bits, called a nibble

- Each possible combination of four binary digits is given a symbol, as follows:

$0000=0$	$0100=4$	$1000=8$	$1100=\mathrm{C}$
$0001=1$	$0101=5$	$1001=9$	$1101=\mathrm{D}$
$0010=2$	$0110=6$	$1010=A$	$1110=\mathrm{E}$
$0011=3$	$0111=7$	$1011=B$	$1111=\mathrm{F}$

- Because 16 symbols are used, the notation is called hexadecimal and the 16 symbols are the hexadecimal digits

■ Thus

$$
\begin{aligned}
& 2 C_{16}=\left(2_{16} * 16^{1}\right)+\left(C_{16} * 16^{0}\right) \\
& =\left(2_{10} * 16^{1}\right)+\left(12_{10} * 16^{0}\right)=44
\end{aligned}
$$

Table 9.3

Decimal, Binary, and Hexadecimal

Decimal (base 10)	Binary (base 2)	Hexadecimal (base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F
16	00010000	10
17	00010001	11
18	00010010	12
31	00011111	$1 F$
100	01100100	64
255	11111111	FF
256	000100000000	100

Hexadecimal Notation

Not only used for representing integers but also as a concise notation
for representing any sequence of binary digits

Reasons for using hexadecimal notation are:

In most computers,
It is more compact than binary notation binary data occupy some

It is extremely easy to multiple of 4 bits, and hence some multiple of a convert between binary single hexadecimal digit

+ Summary

Chapter 9

■ The decimal system
■ Positional number systems

■ The binary system

Number Systems

- Converting between binary and decimal
- Integers
- Fractions

■ Hexadecimal notation

