
+

William Stallings

Computer Organization

and Architecture

10th Edition

© 2016 Pearson Education, Inc., Hoboken,

NJ. All rights reserved.

+ Chapter 11
Digital Logic

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Boolean Algebra

◼ Mathematical discipline used to design and analyze the
behavior of the digital circuitry in digital computers and other
digital systems

◼ Named after George Boole

◼ English mathematician

◼ Proposed basic principles of the algebra in 1854

◼ Claude Shannon suggested Boolean algebra could be used to
solve problems in relay-switching circuit design

◼ Is a convenient tool:

◼ Analysis

◼ It is an economical way of describing the function of digital circuitry

◼ Design

◼ Given a desired function, Boolean algebra can be applied to develop a
simplified implementation of that function

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Boolean Variables and Operations

◼ Makes use of variables and operations

◼ Are logical

◼ A variable may take on the value 1 (TRUE) or 0 (FALSE)

◼ Basic logical operations are AND, OR, and NOT

◼ AND

◼ Yields true (binary value 1) if and only if both of its operands are true

◼ In the absence of parentheses the AND operation takes precedence
over the OR operation

◼ When no ambiguity will occur the AND operation is represented by
simple concatenation instead of the dot operator

◼ OR

◼ Yields true if either or both of its operands are true

◼ NOT

◼ Inverts the value of its operand

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

(b) Boolean Operators Extended to More than Two Inputs (A, B, . . .)

Operation Expression Output = 1 if

AND A • B • … All of the set {A, B, …} are 1.

OR A + B + … Any of the set {A, B, …} are 1.

NAND

A·B·… Any of the set {A, B, …} are 0.

NOR

A + B+… All of the set {A, B, …} are 0.

XOR A Å B Å … The set {A, B, …} contains an
odd number of ones.

Table 11.1 Boolean Operators

(a) Boolean Operators of Two Input Variables

Basic Postulates

A • B = B • A A + B = B + A Commutative Laws

A • (B + C) = (A • B) + (A • C) A + (B • C) = (A + B) • (A + C) Distributive Laws

1 • A = A 0 + A = A Identity Elements

A • A = 0 A + A = 1 Inverse Elements

Other Identities

0 • A = 0 1 + A = 1

A • A = A A + A = A

A • (B • C) = (A • B) • C A + (B + C) = (A + B) + C Associative Laws

A · B = A + B A + B = A · B DeMorgan's Theorem

Table 11.2

Basic Identities of Boolean Algebra

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Name

AND
A

B
F

FOR

NOT

NAND

NOR

XOR

Figure 11.1 Basic Logic Gates

Graphical Symbol Truth Table
Algebraic

Function

F = A B

or

F = AB

F = A

or

F = A’

F = A + B

F = AB

F = A + B

F = A B

A B F

0 0 0

0 1 0

1 0 0

1 1 1

A B F

0 0 0

0 1 1

1 0 1

1 1 1

A F

0 1

1 0

A B F

0 0 1

0 1 1

1 0 1

1 1 0

A B F

0 0 1

0 1 0

1 0 0

1 1 0

A B F

0 0 0

0 1 1

1 0 1

1 1 0

A

B
F

A

B
F

A

B
F

A F

A

B

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 11.2 Some Uses of NAND Gates

A A

A
A

B

B

A A B

B

A+B

A B

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 11.3 Some Uses of NOR Gates

A A

A
A

B

B

A (A+B)

B
A+B

A B

Combinational Circuit
An interconnected set of
gates whose output at any
time is a function only of the
input at that time

The appearance of the input
is followed almost
immediately by the
appearance of the output,
with only gate delays

Consists of n binary inputs
and m binary outputs

Can be defined in three
ways:

• Truth table
• For each of the 2n possible

combinations of input signals,
the binary value of each of the
m output signals is listed

• Graphical symbols
• The interconnected layout of

gates is depicted

• Boolean equations
• Each output signal is

expressed as a Boolean
function of its input signals

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A B C F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

Table 11.3

A Boolean Function of Three Variables

F = ҧ𝐴B ҧ𝐶 + ഥABC+ AB ҧ𝐶

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A B C

F

Figure 11.4 Sum-of-Products Implementation of Table 11.3

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A
B

C

A
B

C

A
B F

C

A
B

C

A
B

C

Figure 11.5 Product-of-Sums Implementation of Table 11.3

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 11.6 Simplified Implementation of Table 11.3

B

C

A

F

F = ҧ𝐴B ҧ𝐶 + ഥABC+ AB ҧ𝐶

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

AB

1

(a) F = AB + AB

00 01 11 10

00

00

01

11

10

01 11 10

00

0

1

01 11 10

1

BC

A
1

(b) F = ABC + ABC + ABC

1

1

CD

AB

1

(c) F = ABCD + ABCD + ABCD

1

1

C

B

D

Figure 11.7 The Use of Karnaugh Maps to Represent Boolean Functions

A

(d) Simplified Labeling of Map

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

00

00

01

11

10

01 11 10

CD

AB 1

(a) ABD

Figure 11.8 Example Use of Karnaugh Maps

00

00

01

11

10

01 11 10

CD

AB

1

(b) BCD

00

00

01

11

10

01 11 10

CD

AB 1

(c) ABD

00

00

01

11

10

01 11 10

CD

AB

1 11 1

(d) AB

00

00

01

11

10

01 11 10

CD

AB

(e) BC

00

00

01

11

10

01 11 10

CD

AB

(f) BD

00

00

01

11

10

01 11 10

CD

AB

(g) A

00

00

01

11

10

01 11 10

CD

AB 1

1

(h) D

00

00

01

11

10

01 11 10

CD

AB

(i) C

1

1

1

11

11

11

11

11

11

11

11

1 11 1

1 11 1

1

1

1

1

1

1

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

00

00

01

11

10

01 11 10

CD

AB

(b) F = BCD + ACD

Figure 11.9 Overlapping Groups

1

1

1

1

00

0

1

01 11 10

BC

A

(a) F = AB + BC

1

1

1

 Input Output

Number A B C D Number W X Y Z

0 0 0 0 0 1 0 0 0 1

1 0 0 0 1 2 0 0 1 0
2 0 0 1 0 3 0 0 1 1

3 0 0 1 1 4 0 1 0 0

4 0 1 0 0 5 0 1 0 1

5 0 1 0 1 6 0 1 1 0

6 0 1 1 0 7 0 1 1 1

7 0 1 1 1 8 1 0 0 0

8 1 0 0 0 9 1 0 0 1
9 1 0 0 1 0 0 0 0 0

1 0 1 0 d d d d

1 0 1 1 d d d d

1 1 0 0 d d d d

1 1 0 1 d d d d

1 1 1 0 d d d d

Don't

care

con-

dition

ì

í

ï
ï ï

î

ï
ï
ï

1 1 1 1 d d d d

Table 11.4 Truth Table for the One-Digit Packed Decimal Incrementer

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 11.4

Truth Table for the One-Digit Packed

Decimal Incrementer

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

00

00

01

11

10

01 11 10

CD

AB 1

(a) W = AD + ABCD

1

d d d

d d

00

00

01

11

10

01 11 10

CD

AB

1

1 1 1

d d

d dd d

(b) X = BD + BC + BCD

00

00

01

11

10

01 11 10

CD

AB

1 1

11

(c) Y = ACD + ACD

d d d d

d d

d d d d

d d

00

00

01

11

10

01 11 10

CD

AB

1

1

1

1

(d) Z = D

1

Figure 11.10 Karnaugh Maps for the Incrementer

d

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Product Term Index A B C D

A B C D 1 0 0 0 1

A BC D 5 0 1 0 1

A BCD 6 0 1 1 0

ABC D 12 1 1 0 0

ABCD 7 0 1 1 1

ABCD 11 1 0 1 1

ABCD 13 1 1 0 1

ABCD 15 1 1 1 1

Table 11.5
First Stage of Quine-McCluskey Method

(for F = ABCD + AB D + AB + A CD + BCD + BC + B D + D)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 ABCD ABCD ABC D ABCD ABCD A BCD ABC D D

BD X X X X

A C D X Ä
ABC X Ä

ABC X Ä

ACD X Ä

Table 11.6

Last Stage of Quine-McCluskey Method

(for F = ABCD + AB D + AB + A CD + BCD + BC + B D + D)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 11.11 NAND Implementation of Table 11.3

A

B

B

C

F

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

D3

D2

D1

S1

4-to-1
multiplexer

S2

F

D0

Figure 11.12 4-to-1 Multiplexer Representation

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

S2 S1 F

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Table 11.7

4-to-1 Multiplexer Truth Table

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

D0

D1

D2

D3

S1S2

F

Figure 11.13 Multiplexer Implementation

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

S2 4-to-1
MUX

Figure 11.14 Multiplexer Input to Program Counter

S1

PC0

IR0C0 ALU0

S2 4-to-1
MUXS1

PC1

IR1C1 ALU1

S2 4-to-1
MUXS1

PC15

IR15C15 ALU15

Multiplexers are used in digital circuits to control signal and data routing. An example is the loading

of the program counter (PC). The value to be loaded into the program counter may come from one

of several different sources:

* A binary counter, if the PC is to be incremented for the next instruction

*The instruction register, if a branch instruction using a direct address has just been executed

*The output of the ALU, if the branch instruction specifies the address using a displacement mode

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A
D

0

000

Figure 11.15 Decoder with 3 Inputs and 23 = 8 Outputs

D
1

001

D
2

010

D
3

011

D
4

100

D
5

101

D
6

110

D
7

111

B

C

2-to-4
decoder

A8

Figure 11.16 Address Decoding

256 X 8
RAM

256 X 8
RAM

256 X 8
RAM

256 X 8
RAM

A9

A0

A7

En
ab

le

En
ab

le

En
ab

le

En
ab

le

Decoders find many uses in digital computers. One example is address decoding. Suppose we wish to

construct a 1K-byte memory using four 256 * 8-bit RAM chips. We want a single unified address space,

which can be broken down as follows:

Address Chip

0000-00FF 0

0100-01FF 1

0200-02FF 2

0300-03FF 3

Each chip requires 8 address lines, and these are supplied by the lower-order 8 bits of the address. The

higher-order 2 bits of the 10-bit address are used to select one of the four RAM chips. For this purpose, a

2-to-4 decoder is used whose output enables one of the four chips, as shown in Figure 11.16.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Data input

n-bit
destination

address 2n outputs
n-to-2n

decoder

Figure 11.17 Implementation of a Demultiplexer Using a Decoder

With an additional input line, a decoder can be used as a demultiplexer. The demultiplexer performs the

inverse function of a multiplexer; it connects a single input to one of several outputs. This is shown in

Figure 11.17. As before, n inputs are decoded to produce a single one of 2n outputs. All of the 2n output

lines are ANDed with a data input line. Thus, the n inputs act as an address to select a particular out- put

line, and the value on the data input line (0 or 1) is routed to that output line.

+
Read-Only Memory (ROM)

◼ Memory that is implemented with combinational circuits

◼ Combinational circuits are often referred to as “memoryless”

circuits because their output depends only on their current input

and no history of prior inputs is retained

◼ Memory unit that performs only the read operation

◼ Binary information stored in a ROM is permanent and is created

during the fabrication process

◼ A given input to the ROM (address lines) always produces the

same output (data lines)

◼ Because the outputs are a function only of the present inputs, ROM

is a combinational circuit

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Input Output

X1 X2 X3 X4 Z1 Z2 Z3 Z4

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1
1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0

Table 11.8

Truth Table for a ROM

A ROM can be implemented with a decoder and a set of OR gates. As an example, consider Table 11.8.

This can be viewed as a truth table with four inputs and four outputs. It can also be viewed as defining

the contents of a 64-bit ROM consisting of 16 words of 4 bits each. The four inputs specify an address,

and the four outputs specify the contents of the location specified by the address.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
Figure 11.18 A 64-Bit ROM

Z1 Z2 Z3 Z4

4-input

16-output

decoder

X1

X2

X3

X4

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Figure 11.18 shows how this memory could be implemented using a 4-to-16 decoder and four OR gates. As

with the PLA, a regular organization is used, and the interconnections are made to reflect the desired result.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

(a) Single-Bit Addition (b) Addition with Carry Input

A B Sum Carry Cin A B Sum Cout

0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 1 1 0

1 0 1 0 0 1 0 1 0

1 1 0 1 0 1 1 0 1

 1 0 0 1 0

 1 0 1 0 1

 1 1 0 0 1

 1 1 1 1 1

Table 11.9

Binary Addition Truth Tables

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 11.19 4-Bit Adder

S3

A3 B3

C3 Cin

S2

A2 B2

C2 Cin

S1

A1 B1

C1 Cin

S0

A0 B0

C0 Cin 0

Overflow
signal

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Sum

Figure 11.20 Implementation of an Adder

A

B

C

A

B

C

A

B

C

A

B

C

Carry

A

B

A

C

B

C

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 11.21 Construction of a 32-Bit Adder Using 8-Bit Adders

S31

A31

S24

B31

C23 C15 C7
CinCout

8-bit
adder

A31B31 A23B23 A16B16 A15B15 A8 B8 A7 B7 A0 B0

8-bit
adder

8-bit
adder

8-bit
adder

S23 S16 S15 S8 S7 S0

Sequential Circuit
Current output

depends not only
on the current

input, but also on
the past history

of inputs

Makes use of
combinational

circuits

Sequential

Circuit

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Flip-Flops

◼ Simplest form of sequential circuit

◼ There are a variety of flip-flops, all of which share two

properties:

1. The flip-flop is a bistable device. It exists in one of two

states and, in the absence of input, remains in that state.

Thus, the flip-flop can function as a 1-bit memory.

2. The flip-flop has two outputs, which are always the

complements of each other.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 11.22 The S-R Latch Implemented with NOR Gates

S

R

Q

Q

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

1

0

S

R

Q

Figure 11.23 NOR S-R Latch Timing Diagram

Q

1

0

1

0

1

0

2∆t ∆t

t

∆t 2∆t

The output of the S–R latch changes, after a brief

time delay, in response to a change in the input.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 11.10 The S-R Latch

(a) Characteristic Table (b) Simplified Characteristic Table

Current

Inputs

SR

Current

State

Qn

Next State

Qn+1

 S R Qn+1

00 0 0 0 0 Qn

00 1 1 0 1 0

01 0 0 1 0 1

01 1 0 1 1 —

10 0 1

10 1 1

11 0 —

11 1 —

(c) Response to Series of Inputs

t 0 1 2 3 4 5 6 7 8 9

S 1 0 0 0 0 0 0 0 1 0

R 0 0 0 1 0 0 1 0 0 0

Qn+1 1 1 1 0 0 0 0 0 1 1

Observe that the inputs S = 1, R = 1 are not

allowed, because these would produce an

inconsistent output (both Q and Q equal 0).

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 11.24 Clocked S-R Flip Flop

S

R

Clock

Q

Q

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 11.25 D Flip Flop

D

Clock

Q

Q

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 11.26 J-K Flip Flop

J

K

Clock

Q

Q

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Qn

0

1

Qn

Name

S-R

Figure 11.27 Basic Flip-Flops

Graphical Symbol Truth Table

S

Ck

Q

QR

S R Qn+1

0

0

1

1

0

1

0

1

Qn

0

1

–

J-K

J

Ck

Q

QK

J K Qn+1

0

0

1

1

0

1

0

1

D

D

Ck

Q

Q

D Qn+1

0

1

0

1

D

D08

Clk

Q D

D07

Clk

Q D

D06

Clk

Q D

D05

Clk

Q D

D04

Clk

Q D

D03

Clk

Q D

D02

Clk

Q D

D01

D18 D17

Data lines

Output lines

D16 D15 D14 D13 D12 D11

Clk

Q

Figure 11.28 8-Bit Parallel Register

Clock

Load

The 8-bit register of Figure 11.28 illustrates the operation of a parallel register using D flip-flops. A

control signal, labeled load, controls writing into the register from signal lines, D11 through D18. These

lines might be the output of multiplexers, so that data from a variety of sources can be loaded into the

register.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

D

Clk

Q D

Clk

Q D

Clk

Q D

Clk

Q D

Clk

Q

Clock

Serial In Serial Out

Figure 11.29 5-Bit Shift Register

+ Counter

◼ A register whose value is easily incremented by 1 modulo

the capacity of the register

◼ After the maximum value is achieved the next increment sets

the counter value to 0

◼ An example of a counter in the CPU is the program counter

◼ Can be designated as:

◼ Asynchronous

◼ Relatively slow because the output of one flip-flop triggers a

change in the status of the next flip-flop

◼ Synchronous

◼ All of the flip-flops change state at the same time

◼ Because it is faster it is the kind used in CPUs

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

An asynchronous counter is also referred to as a ripple counter, because the change that occurs to

increment the counter starts at one end and “ripples” through to the other end. Figure 11.30 shows an

implementation of a 4-bit counter using J–K flip-flops, together with a timing diagram that illustrates its

behavior.

In the illustrated implementation, the counter is incremented with each clock pulse. The J and K inputs to

each flip-flop are held at a constant 1. This means that, when there is a clock pulse, the output at Q will be

inverted (1 to 0; 0 to 1).

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 11.31 Design of a Synchronous Counter

(a) Truth table

(b) Karnaugh maps

(c) Logic diagram

0 0 0 0 d 0 d 1 d

C B A Jc Kc Jb Kb Ja Ka

0 0 1 0 d 1 d d 1

0 1 0 0 d d 0 1 d

0 1 1 1 d d 1 d 1

1 0 0 d 0 0 d 1 d

1 0 1 d 0 1 d d 1

1 1 0 d 0 d 0 1 d

1

0
CJc = BA

BA

1

00 01 11 10

1 1 d 1 d 1 d 1

0
CKc = BA

BA

1

00 01 11 10

0
CJb = A

BA

1

00 01 11 10

0
CKb = A

BA

1

00 01 11 10

0
CJa = 1

High

Clock

BA

1

00 01 11 10

0
CKa = 1

BA

1

00 01 11 10

1

d dd d

d d1

d d1

d 1d

d 1d

1

1

d 1d

d 1d

d

1

dd d

1 d1

1 d1

d

d

Ja

Ck

A

AKa

Jb

Ck

B

BKb

C B

binary

output

AJc

Ck

C

CKc

The ripple counter has the disadvantage

of the delay involved in changing value,

which is proportional to the length of the

counter. To overcome this disadvantage,

CPUs make use of synchronous

counters, in which all of the flip-flops of

the counter change at the same time. In

this subsection, we present a design for a

3-bit synchronous counter. In doing so,

we illustrate some basic concepts in the

design of a synchronous circuit.

+

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 11.11 PLD Terminology

Programmable Logic Device (PLD)

 A general term that refers to any type of integrated circuit used for implementing digital

hardware, where the chip can be configured by the end user to realize different designs.

Programming of such a device often involves placing the chip into a special programming unit,
but some chips can also be configured “in-system”. Also referred to as a field-programmable

device (FPD).

Programmable Logic Array (PLA)

 A relatively small PLD that contains two levels of logic, an AND-plane and an OR-plane,

where both levels are programmable.

Programmable Array Logic (PAL)

 A relatively small PLD that has a programmable AND-plane followed by a fixed OR-

plane.

Simple PLD (SPLD)

 A PLA or PAL.

Complex PLD (CPLD)

 A more complex PLD that consists of an arrangement of multiple SPLD-like blocks

on a single chip.

Field-Programmable Gate Array (FPGA)

 A PLD featuring a general structure that allows very high logic capacity. Whereas

CPLDs feature logic resources with a wide number of inputs (AND planes), FPGAs offer more
narrow logic resources. FPGAs also offer a higher ratio of flip-flops to logic resources than do

CPLDs.

Logic Block

 A relatively small circuit block that is replicated in an array in an FPD. When a circuit is

implemented in an FPD, it is first decomposed into smaller sub-circuits that can each be mapped

into a logic block. The term logic block is mostly used in the context of FPGAs, but it could also
refer to a block of circuitry in a CPLD.

Table

11.11

PLD

Terminology

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

I1

O1

(a) Layout for 3-input

2-output PLA

I2 I3

O2

A

ABC

B C

(b) Programmed PLA

Figure 11.32 An Example of a Programmable Logic Array

ABC + AB

AB

AB + AC

AC

“AND” array

“OR” array

The AND array is programmed by establishing a

connection between any PLA input or its negation

and any AND gate input by connecting the

corresponding lines at their point of intersection. On

the right is a programmable OR array, which involves

connecting AND gate outputs to OR gate inputs.

PLAs are manufactured in two different ways to

allow easy programming (making of

connections). In the first, every possible

connection is made through a fuse at every

intersection point. The undesired connections

can then be later removed by blowing the fuses.

This type of PLA is referred to as a field-

programmable logic array. Alternatively, the

proper connections can be made during chip

fabrication by using an appropriate mask

supplied for a particular interconnection pattern

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 11.33 Structure of an FPGA

Logic

block

I/O

block
Many commercial PLD products

exist on the market today with this basic

structure, and are collectively referred to as

Complex PLDs (CPLDs). The most

important type of CPLD is the FPGA.

An FPGA consists of an array of

uncommitted circuit elements, called logic

blocks, and interconnect resources. An

illustration of a typical FPGA architecture is

shown in Figure 11.33. The key components

of an FPGA are;

• Logic block: The configurable logic

blocks are where the computation of the

user’s circuit takes place.

• I/O block: The I/O blocks connect I/O

pins to the circuitry on the chip.

• Interconnect: These are signal paths

available for establishing connections

among I/O blocks and logic blocks.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 11.34 A Simple FPGA Logic Block

D

A0

A1

A2

A3

Clock

2-to-1

MUX

Ck

Q

1
6

 1

lo
o
k

u
p

 t
ab

le

Figure 11.34 shows an example of a simple logic block consisting of a D flip-flop, a 2-to-1 multiplexer,

and a 16-bit lookup table. The lookup table is a memory consisting of 16 1-bit elements, so that 4

input lines are required to select one of the 16 bits. Larger logic blocks have larger lookup tables and

multiple interconnected lookup tables. The combinational logic realized by the lookup table can be

output directly or stored in the D flip-flop and output synchronously. A separate one-bit memory

controls the multiplexer to determine whether the output comes directly from the lookup table or from

the flip-flop.

By interconnecting numerous logic blocks, very complex logic functions can be easily implemented.

+ Summary

◼ Boolean Algebra

◼ Gates

◼ Combinational Circuits

◼ Implementation of Boolean

Functions

◼ Multiplexers

◼ Decoders

◼ Read-Only-Memory

◼ Adders

◼ Sequential Circuits

◼ Flip-Flops

◼ Registers

◼ Counters

◼ Programmable Logic Devices

◼ Programmable Logic Array

◼ Field-Programmable Gate

Array

Chapter 11

Digital

Logic

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

