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+
Boolean Algebra

◼ Mathematical discipline used to design and analyze the 
behavior of the digital circuitry in digital computers and other 
digital systems

◼ Named after George Boole

◼ English mathematician

◼ Proposed basic principles of the algebra in 1854

◼ Claude Shannon suggested Boolean algebra could be used to 
solve problems in relay-switching circuit design

◼ Is a convenient tool:

◼ Analysis

◼ It is an economical way of describing the function of digital circuitry

◼ Design

◼ Given a desired function, Boolean algebra can be applied to develop a 
simplified implementation of that function
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Boolean Variables and Operations

◼ Makes use of variables and operations

◼ Are logical

◼ A variable may take on the value 1 (TRUE) or 0 (FALSE)

◼ Basic logical operations are AND, OR, and NOT

◼ AND

◼ Yields true (binary value 1) if and only if both of its operands are true

◼ In the absence of parentheses the AND operation takes precedence 
over the OR operation

◼ When no ambiguity will occur the AND operation is represented by 
simple concatenation instead of the dot operator

◼ OR

◼ Yields true if either or both of its operands are true

◼ NOT

◼ Inverts the value of its operand
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(b) Boolean Operators Extended to More than Two Inputs (A, B, . . .) 

 

Operation Expression Output = 1 if 

AND A • B • … All of the set {A, B, …} are 1. 

OR A + B + … Any of the set {A, B, …} are 1. 

NAND   

  

A·B·…  Any of the set {A, B, …} are 0. 

NOR   

  

A + B+…  All of the set {A, B, …} are 0. 

XOR A Å B Å … The set {A, B, …} contains an 
odd number of ones. 

 

Table 11.1   Boolean Operators

(a) Boolean Operators of Two Input Variables 



Basic Postulates 

A • B = B • A A + B = B + A Commutative Laws 

A • (B + C) = (A • B) + (A • C) A + (B • C) = (A + B) • (A + C) Distributive Laws 

1 • A = A 0 + A = A Identity Elements 

A • A  = 0 A + A  = 1 Inverse Elements 

Other Identities 

0 • A = 0 1 + A = 1  

A • A = A A + A = A  

A • (B • C) = (A • B) • C A + (B + C) = (A + B) + C Associative Laws 

A · B = A + B  A + B = A · B  DeMorgan's Theorem 

 

Table 11.2   

Basic Identities of Boolean Algebra 
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Name
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Figure 11.1   Basic Logic Gates

Graphical Symbol Truth Table
Algebraic

Function

F = A   B
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Figure 11.2   Some Uses of NAND Gates
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Figure 11.3   Some Uses of NOR Gates
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Combinational Circuit
An interconnected set of 
gates whose output at any 
time is a function only of the 
input at that time

The appearance of the input 
is followed almost 
immediately by the 
appearance of the output, 
with only gate delays

Consists of n binary inputs 
and m binary outputs

Can be defined in three 
ways:

• Truth table
• For each of the 2n possible 

combinations of input signals, 
the binary value of each of the 
m output signals is listed

• Graphical symbols
• The interconnected layout of 

gates is depicted

• Boolean equations
• Each output signal is 

expressed as a Boolean 
function of its input signals
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A B C F 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 0 

 

Table 11.3  

A Boolean Function of Three Variables 

F = ҧ𝐴B ҧ𝐶 + ഥABC+ AB ҧ𝐶
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F

Figure 11.4   Sum-of-Products Implementation of Table 11.3
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Figure 11.5  Product-of-Sums Implementation of Table 11.3
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Figure 11.6   Simplified Implementation of Table 11.3
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Figure 11.8 Example Use of  Karnaugh Maps
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Figure 11.9  Overlapping Groups
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 Input  Output 

Number A B C D Number W X Y Z 

0 0 0 0 0 1 0 0 0 1 

1 0 0 0 1 2 0 0 1 0 
2 0 0 1 0 3 0 0 1 1 

3 0 0 1 1 4 0 1 0 0 

4 0 1 0 0 5 0 1 0 1 

5 0 1 0 1 6 0 1 1 0 

6 0 1 1 0 7 0 1 1 1 

7 0 1 1 1 8 1 0 0 0 

8 1 0 0 0 9 1 0 0 1 
9 1 0 0 1 0 0 0 0 0 

1 0 1 0  d d d d 

1 0 1 1  d d d d 

1 1 0 0  d d d d 

1 1 0 1  d d d d 

1 1 1 0  d d d d 

Don't 

care 

con-

dition 

ì 

í 

ï 
ï ï 

î 

ï 
ï 
ï 

 

1 1 1 1  d d d d 

 

Table 11.4   Truth Table for the One-Digit Packed Decimal Incrementer 
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Table 11.4   

Truth Table for the One-Digit Packed 

Decimal Incrementer
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Product Term Index A B C D  

A B C D 1 0 0 0 1  

A BC D 5 0 1 0 1  

A BCD 6 0 1 1 0  

ABC D  12 1 1 0 0  

ABCD 7 0 1 1 1  

ABCD 11 1 0 1 1  

ABCD 13 1 1 0 1  

ABCD 15 1 1 1 1  

 

Table 11.5  
First Stage of Quine-McCluskey Method

(for F = ABCD + AB D + AB  + A CD + BCD + BC  + B D + D) 
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 ABCD ABCD ABC D  ABCD ABCD A BCD  ABC D D 

BD X X   X  X  

A C D       X  Ä 
ABC     X  Ä 

  

ABC  X  Ä 
     

ACD X    Ä 
    

 

Table 11.6

Last Stage of Quine-McCluskey Method

(for F = ABCD + AB D + AB  + A CD + BCD + BC  + B D + D)
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Figure 11.11  NAND Implementation of Table 11.3
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Figure 11.12  4-to-1 Multiplexer Representation
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S2 S1 F 

0 0 D0 

0 1 D1 

1 0 D2 

1 1 D3 

 

Table 11.7  

4-to-1 Multiplexer Truth Table 
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Figure 11.13  Multiplexer Implementation
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S2 4-to-1
MUX

Figure 11.14  Multiplexer Input to Program Counter

S1

PC0

IR0C0 ALU0

S2 4-to-1
MUXS1

PC1

IR1C1 ALU1

S2 4-to-1
MUXS1

PC15

IR15C15 ALU15

Multiplexers are used in digital circuits to control signal and data routing. An example is the loading 

of the program counter (PC). The value to be loaded into the program counter may come from one 

of several different sources: 

* A binary counter, if the PC is to be incremented for the next instruction 

*The instruction register, if a branch instruction using a direct address has just been executed 

*The output of the ALU, if the branch instruction specifies the address using a displacement mode 
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Figure 11.15  Decoder with 3 Inputs and 23 = 8 Outputs
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Figure 11.16  Address Decoding
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Decoders find many uses in digital computers. One example is address decoding. Suppose we wish to 

construct a 1K-byte memory using four 256 * 8-bit RAM chips. We want a single unified address space, 

which can be broken down as follows: 

Address Chip

0000-00FF 0

0100-01FF 1

0200-02FF 2

0300-03FF 3

Each chip requires 8 address lines, and these are supplied by the lower-order 8 bits of the address. The 

higher-order 2 bits of the 10-bit address are used to select one of the four RAM chips. For this purpose, a 

2-to-4 decoder is used whose output enables one of the four chips, as shown in Figure 11.16. 
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Data input

n-bit
destination

address 2n outputs
n-to-2n

decoder

Figure 11.17  Implementation of a Demultiplexer  Using a Decoder

With an additional input line, a decoder can be used as a demultiplexer. The demultiplexer performs the 

inverse function of a multiplexer; it connects a single input to one of several outputs. This is shown in 

Figure 11.17. As before, n inputs are decoded to produce a single one of 2n outputs. All of the 2n output 

lines are ANDed  with a data input line. Thus, the n inputs act as an address to select a particular out- put 

line, and the value on the data input line (0 or 1) is routed to that output line. 
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Read-Only Memory (ROM)

◼ Memory that is implemented with combinational circuits

◼ Combinational circuits are often referred to as “memoryless” 

circuits because their output depends only on their current input 

and no history of prior inputs is retained

◼ Memory unit that performs only the read operation

◼ Binary information stored in a ROM is permanent and is created 

during the fabrication process

◼ A given input to the ROM (address lines) always produces the 

same output (data lines)

◼ Because the outputs are a function only of the present inputs, ROM 

is a combinational circuit
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Input  Output 

X1 X2 X3 X4  Z1 Z2 Z3 Z4 

0 0 0 0  0 0 0 0 

0 0 0 1  0 0 0 1 

0 0 1 0  0 0 1 1 

0 0 1 1  0 0 1 0 
0 1 0 0  0 1 1 0 

0 1 0 1  0 1 1 1 

0 1 1 0  0 1 0 1 

0 1 1 1  0 1 0 0 

1 0 0 0  1 1 0 0 

1 0 0 1  1 1 0 1 

1 0 1 0  1 1 1 1 
1 0 1 1  1 1 1 0 

1 1 0 0  1 0 1 0 

1 1 0 1  1 0 1 1 

1 1 1 0  1 0 0 1 

1 1 1 1  1 0 0 0 

 

Table 11.8  

Truth Table for a ROM 

A ROM can be implemented with a decoder and a set of OR gates. As an example, consider Table 11.8. 

This can be viewed as a truth table with four inputs and four outputs. It can also be viewed as defining 

the contents of a 64-bit ROM consisting of 16 words of 4 bits each. The four inputs specify an address, 

and the four outputs specify the contents of the location specified by the address. 
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Figure 11.18  A 64-Bit ROM

Z1 Z2 Z3 Z4

4-input
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Figure 11.18 shows how this memory could be implemented using a 4-to-16 decoder and four OR gates. As 

with the PLA, a regular organization is used, and the interconnections are made to reflect the desired result.
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(a) Single-Bit Addition  (b) Addition with Carry Input 

A B Sum Carry  Cin A B Sum Cout 

0 0 0 0  0 0 0 0 0 

0 1 1 0  0 0 1 1 0 

1 0 1 0  0 1 0 1 0 

1 1 0 1  0 1 1 0 1 

     1 0 0 1 0 

     1 0 1 0 1 

     1 1 0 0 1 

     1 1 1 1 1 

 

Table 11.9  

Binary Addition Truth Tables 
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Figure 11.19  4-Bit Adder
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Sum

Figure 11.20  Implementation of an Adder
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Figure 11.21  Construction of a 32-Bit Adder Using 8-Bit Adders
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Sequential Circuit
Current output 

depends not only 
on the current 

input, but also on 
the past history 

of inputs

Makes use of 
combinational 

circuits

Sequential

Circuit
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Flip-Flops

◼ Simplest form of sequential circuit

◼ There are a variety of flip-flops, all of which share two 

properties:

1. The flip-flop is a bistable device.  It exists in one of two 

states and, in the absence of input, remains in that state.  

Thus, the flip-flop can function as a 1-bit memory.

2. The flip-flop has two outputs, which are always the 

complements of each other.
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Figure 11.22   The S-R Latch Implemented with NOR Gates
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1

0

S

R

Q

Figure 11.23   NOR S-R Latch Timing Diagram
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The output of the S–R latch changes, after a brief 

time delay, in response to a change in the input.
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Table 11.10   The S-R Latch 
 

 

(a) Characteristic Table  (b) Simplified Characteristic Table 

Current 

Inputs 

SR 

Current 

State 

Qn 

Next State 

Qn+1 

 S R Qn+1 

00 0 0  0 0 Qn 

00 1 1  0 1 0 

01 0 0  1 0 1 

01 1 0  1 1 — 

10 0 1     

10 1 1     

11 0 —     

11 1 —     

 

(c) Response to Series of Inputs 

 

t 0 1 2 3 4 5 6 7 8 9 

S 1 0 0 0 0 0 0 0 1 0 

R 0 0 0 1 0 0 1 0 0 0 

Qn+1 1 1 1 0 0 0 0 0 1 1 

 

Observe that the inputs S = 1, R = 1 are not 

allowed, because these would produce an 

inconsistent output (both Q and Q equal 0).
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Figure 11.24   Clocked S-R Flip Flop
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Figure 11.25   D Flip Flop

D

Clock

Q

Q



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 11.26   J-K Flip Flop
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Figure 11.27  Basic Flip-Flops

Graphical Symbol Truth Table
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Clk

Q

Figure 11.28   8-Bit Parallel Register

Clock

Load

The 8-bit register of Figure 11.28 illustrates the operation of a parallel register using D flip-flops. A 

control signal, labeled load, controls writing into the register from signal lines, D11 through D18. These 

lines might be the output of multiplexers, so that data from a variety of sources can be loaded into the 

register. 
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Figure 11.29    5-Bit Shift Register



+ Counter

◼ A register whose value is easily incremented by 1 modulo 

the capacity of the register

◼ After the maximum value is achieved the next increment sets 

the counter value to 0

◼ An example of a counter in the CPU is the program counter

◼ Can be designated as: 

◼ Asynchronous

◼ Relatively slow because the output of one flip-flop triggers a 

change in the status of the next flip-flop

◼ Synchronous

◼ All of the flip-flops change state at the same time

◼ Because it is faster it is the kind used in CPUs
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An asynchronous counter is also referred to as a ripple counter, because the change that occurs to 

increment the counter starts at one end and “ripples” through to the other end. Figure 11.30 shows an 

implementation of a 4-bit counter using J–K flip-flops, together with a timing diagram that illustrates its 

behavior. 

In the illustrated implementation, the counter is incremented with each clock pulse. The J and K inputs to 

each flip-flop are held at a constant 1. This means that, when there is a clock pulse, the output at Q will be 

inverted (1 to 0; 0 to 1).
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Figure 11.31   Design of a Synchronous Counter

(a) Truth table

(b) Karnaugh maps

(c) Logic diagram 
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The ripple counter has the disadvantage 

of the delay involved in changing value, 

which is proportional to the length of the 

counter. To overcome this disadvantage, 

CPUs make use of synchronous 

counters, in which all of the flip-flops of 

the counter change at the same time. In 

this subsection, we present a design for a 

3-bit synchronous counter. In doing so, 

we illustrate some basic concepts in the 

design of a synchronous circuit. 
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Table 11.11  PLD Terminology 
 

Programmable Logic Device (PLD) 

 A general term that refers to any type of integrated circuit used for implementing digital 

hardware, where the chip can be configured by the end user to realize different designs. 

Programming of such a device often involves placing the chip into a special programming unit, 
but some chips can also be configured “in-system”. Also referred to as a field-programmable 

device (FPD). 

 

Programmable Logic Array (PLA) 

 A relatively small PLD that contains two levels of logic, an AND-plane and an OR-plane, 

where both levels are programmable. 

 
Programmable Array Logic (PAL) 

 A relatively small PLD that has a programmable AND-plane followed by a fixed OR-

plane. 

 

Simple PLD (SPLD) 

 A PLA or PAL. 

 
Complex PLD (CPLD) 

 A more complex PLD that consists of an arrangement of multiple SPLD-like blocks 

on a single chip. 

 

Field-Programmable Gate Array (FPGA) 

 A PLD featuring a general structure that allows very high logic capacity. Whereas 

CPLDs feature logic resources with a wide number of inputs (AND planes), FPGAs offer more 
narrow logic resources. FPGAs also offer a higher ratio of flip-flops to logic resources than do 

CPLDs. 

 

Logic Block 

 A relatively small circuit block that is replicated in an array in an FPD. When a circuit is 

implemented in an FPD, it is first decomposed into smaller sub-circuits that can each be mapped 

into a logic block. The term logic block is mostly used in the context of FPGAs, but it could also 
refer to a block of circuitry in a CPLD. 
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Figure 11.32  An Example of a Programmable Logic Array

ABC + AB
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AB + AC

AC

“AND” array

“OR” array

The AND array is programmed by establishing a 

connection between any PLA input or its negation 

and any AND gate input by connecting the 

corresponding lines at their point of intersection. On 

the right is a programmable OR array, which involves 

connecting AND gate outputs to OR gate inputs. 

PLAs are manufactured in two different ways to 

allow easy programming (making of 

connections). In the first, every possible 

connection is made through a fuse at every 

intersection point. The undesired connections 

can then be later removed by blowing the fuses. 

This type of PLA is referred to as a field-

programmable logic array. Alternatively, the 

proper connections can be made during chip 

fabrication by using an appropriate mask 

supplied for a particular interconnection pattern
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Figure 11.33  Structure of an FPGA

Logic

block

I/O

block
Many commercial PLD products 

exist on the market today with this basic 

structure, and are collectively referred to as 

Complex PLDs (CPLDs). The most 

important type of CPLD is the FPGA. 

An FPGA consists of an array of 

uncommitted circuit elements, called logic 

blocks, and interconnect resources. An 

illustration of a typical FPGA architecture is 

shown in Figure 11.33. The key components 

of an FPGA are; 

• Logic block: The configurable logic 

blocks are where the computation of the 

user’s circuit takes place. 

• I/O block: The I/O blocks connect I/O 

pins to the circuitry on the chip.

• Interconnect: These are signal paths 

available for establishing connections 

among I/O blocks and logic blocks. 
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Figure 11.34  A Simple FPGA Logic Block
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Figure 11.34 shows an example of a simple logic block consisting of a D flip-flop, a 2-to-1 multiplexer, 

and a 16-bit lookup table. The lookup table is a memory consisting of 16 1-bit elements, so that 4 

input lines are required to select one of the 16 bits. Larger logic blocks have larger lookup tables and 

multiple interconnected lookup tables. The combinational logic realized by the lookup table can be 

output directly or stored in the D flip-flop and output synchronously. A separate one-bit memory 

controls the multiplexer to determine whether the output comes directly from the lookup table or from 

the flip-flop. 

By interconnecting numerous logic blocks, very complex logic functions can be easily implemented. 



+ Summary

◼ Boolean Algebra

◼ Gates

◼ Combinational Circuits

◼ Implementation of Boolean 

Functions

◼ Multiplexers

◼ Decoders

◼ Read-Only-Memory

◼ Adders

◼ Sequential Circuits

◼ Flip-Flops

◼ Registers

◼ Counters

◼ Programmable Logic Devices

◼ Programmable Logic Array

◼ Field-Programmable Gate 

Array
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