
Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Computer Organization and Architecture
Designing for Performance

11th Edition, Global Edition

Chapter 2

Performance Concepts

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Designing for Performance
• The cost of computer systems continues to drop dramatically, while the performance

and capacity of those systems continue to rise equally dramatically

• Today’s laptops have the computing power of an IBM mainframe from 10 or 15
years ago

• Processors are so inexpensive that we now have microprocessors we throw away

• Desktop applications that require the great power of today’s microprocessor-based
systems include:

– Image processing

– Three-dimensional rendering

– Speech recognition

– Videoconferencing

– Multimedia authoring

– Voice and video annotation of files

– Simulation modeling

– Businesses are relying on increasingly powerful servers to handle transaction and database
processing and to support massive client/server networks that have replaced the huge mainframe
computer centers of yesteryear

– Cloud service providers use massive high-performance banks of servers to satisfy high-volume,
high-transaction-rate applications for a broad spectrum of clients

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Microprocessor Speed

Techniques built into contemporary processors

include:

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Pipelining

Branch prediction

Superscalar
execution

Data flow analysis

Speculative
execution

• Processor moves data or instructions into a conceptual
pipe with all stages of the pipe processing
simultaneously

• Processor looks ahead in the instruction code fetched
from memory and predicts which branches, or groups of
instructions, are likely to be processed next

• This is the ability to issue more than one instruction in
every processor clock cycle. (In effect, multiple parallel
pipelines are used.)

• Processor analyzes which instructions are dependent
on each other’s results, or data, to create an optimized
schedule of instructions

• Using branch prediction and data flow analysis, some
processors speculatively execute instructions ahead of
their actual appearance in the program execution,
holding the results in temporary locations, keeping
execution engines as busy as possible

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Performance

Balance
Increase the number

of bits that are
retrieved at one time
by making DRAMs
“wider” rather than

“deeper” and by using
wide bus data paths

Change the DRAM
interface to make it

more efficient by
including a cache or

other buffering
scheme on the DRAM

chip

Reduce the frequency
of memory access by

incorporating
increasingly complex

and efficient cache
structures between
the processor and

main memory

Increase the
interconnect bandwidth

between processors
and memory by using

higher speed buses and
a hierarchy of buses to

buffer and structure
data flow

◼ Adjust the organization and

architecture to compensate

for the mismatch among the

capabilities of the various

Components

❑ While processor speed has

grown rapidly, the speed with

which data can be transferred

between main memory and the

processor has lagged badly.

◼ To solve this problem, architectural

examples

include:

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

101 102 103 104 105 106 107 108 109 1010 1011

Data Rate (bps)

Ethernet modem

(max speed)

Figure 2.1 Typical I/O Device Data Rates

Graphics display

Wi-Fi modem

(max speed)

Hard disk

Optical disc

Laser printer

Scanner

Mouse

Keyboard

Another area of design focus is the handling of I/O devices. As computers

become faster and more capable, more sophisticated applications are developed

that support the use of peripherals with intensive I/O demands.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Improvements in Chip Organization and

Architecture

• Increase hardware speed of processor
– Fundamentally due to shrinking logic gate size

▪ More gates, packed more tightly, increasing clock rate

▪ Propagation time for signals reduced

• Increase size and speed of caches
– Dedicating part of processor chip

▪ Cache access times drop significantly

• Change processor organization and architecture
– Increase effective speed of instruction execution

– Parallelism

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Problems with Clock Speed and Logic

Density

• Power

– Power density increases with density of logic and clock speed

– Dissipating heat

• RC delay

– Speed at which electrons flow limited by resistance and
capacitance of metal wires connecting them

– Delay increases as the RC product increases

– As components on the chip decrease in size, the wire
interconnects become thinner, increasing resistance

– Also, the wires are closer together, increasing capacitance

• Memory latency

– Memory speeds lag processor speeds
© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Processor Trends
• Simply relying on increasing clock rate for increased performance

runs into the power dissipation problem. The faster the clock rate, the
greater the amount of power to be dissipated, and some fundamental
physical limits are being reached.

• Beginning in the late 1980s, and continuing for about 15 years, two
main strategies have been used to increase performance beyond
simply by increasing clock speed.

– increasing cache capacity. There are now typically two or three levels of cache between the processor
and main memory

– parallel execution of instructions within the processor by pipelining and superscalar execution

• By the mid to late 90s, both of these approaches were reaching a
point of diminishing returns. The internal organization of
contemporary processors is exceedingly complex and is able to
squeeze a great deal of parallelism out of the instruction stream. The
benefits from the cache are also reaching a limit.

• To continue to increase performance, designers have had to find
ways of exploiting the growing number of transistors other than
simply building a more complex processor.

– The response in recent years has been the development of the multicore computer chip.
© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Figure 2.2 Processor Trends

0.1

1

10

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

Frequency (MHz)

Power (W)

Cores

102

103

104

105

106

107

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved
© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

The use of multiple
processors on the same chip
provides the potential to
increase performance without
increasing the clock rate

Strategy is to use two simpler
processors on the chip rather
than one more complex
processor

With two processors larger
caches are justified

As caches became larger it
made performance sense to
create two and then three
levels of cache on a chip

Multicore

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Many Integrated Core (MIC)

Graphics Processing Unit (GPU)

MIC

• A large number of cores (sometimes

more than 50)have led to the

introduction of a new term: many

integrated core (MIC).

• Leap in performance as well as the

challenges in developing software to

exploit such a large number of cores

• The multicore and MIC strategy

involves a homogeneous collection of

general purpose processors on a

single chip

GPU

• Core designed to perform parallel

operations on graphics data

• Traditionally found on a plug-in

graphics card, it is used to encode

and render 2D and 3D graphics as

well as process video

• Used as vector processors for a

variety of applications that require

repetitive computations

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Amdahl’s

Law

• proposed by Gene Amdahl

• Deals with the potential

speedup of a program using

multiple processors compared

to a single processor

• Illustrates the problems facing

industry in the development of

multi-core machines
• Software must be adapted to a

highly parallel execution

environment to exploit the power

of parallel processing

• Can be generalized to

evaluate and design technical

improvement in a computer

system

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Figure 2.3 Illustration of Amdahl’s Law

T

(1 – f)T

(1 – f)T

fT

fT

N

1 f 1
1

N
T

Consider a program running on a single

processor such that a fraction (1 – f) of the

execution time involves code that is inherently

serial and a fraction f that involves code that is

infinitely parallelizable with no scheduling

overhead. Let T be the total execution time of the

program using a single processor. Then the

speedup using a parallel processor with N

processors that fully exploits the parallel portion of

the program

Serial Parallel

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Number of Processors

Figure 2.4 Amdahl’s Law for Multiprocessors

S
p

e
d

u
p

f = 0.95

f = 0.90

f = 0.75

f = 0.5

1. When f is small, the use of parallel processors has little effect.

2. As N approaches infinity, speedup is bound by 1/(1 – f), so that there

are diminishing returns for using more processors.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Little’s Law

• Fundamental and simple relation with broad applications

• Can be applied to almost any system that is statistically in steady state, and in which there is no
leakage

• Queuing system
– If server is idle an item is served immediately, otherwise an arriving item joins a queue

– There can be a single queue for a single server or for multiple servers, or multiple queues with one being for each of multiple servers

• Average number of items in a queuing system equals the average rate at which items arrive multiplied by the
time that an item spends in the system

– Relationship requires very few assumptions

– Because of its simplicity and generality it is extremely useful

• Example: Little's Law tells us that the average number of customers in the store L, is the
effective arrival rate λ, times the average time that a customer spends in the store W, or simply:

L= * W

Assume customers arrive at the rate of 10 per hour and stay an average of 0.5 hour. This means
we should find the average number of customers in the store at any time to be 5.

L=10 * 0.5=5

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Figure 2.5 System Clock

quartz
crystal

From Computer Desktop Encyclopedia

1998, The Computer Language Co.

analog to
digital

conversion

Operations performed by a processor, such as fetching an

instruction, decoding the instruction, performing an arithmetic

operation, and so on, are governed by a system clock.

Typically, all operations begin with the pulse of the clock.

Thus, at the most fundamental level, the speed of a processor

is dictated by the pulse frequency produced by the clock,

measured in cycles per second, or Hertz (Hz).

Typically, clock signals are generated by a quartz crystal, which generates a constant sine

wave while power is applied. This wave is converted into a digital voltage pulse stream that

is provided in a constant flow to the processor circuitry (Figure 2.5). For example, a 1-GHz

processor receives 1 billion pulses per second. The rate of pulses is known as the clock

rate, or clock speed. One increment, or pulse, of the clock is referred to as a clock cycle,

or a clock tick. The time between

pulses is the cycle time.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Instruction Execution Rate

• A processor is driven by a clock with a constant frequency f or,
equivalently, a constant cycle time t, where

t = 1/f.

• The processor time T needed to execute a given program can be
expressed as

T = Ic * CPI * t

• The instruction count, Ic, for a program, is the number of
machine instructions executed for that program until it runs to
completion or for some defined time interval.

• An important parameter is the average cycles per instruction
(CPI) for a program. (The number of clock cycles required
varies for different types of instructions. CPI is the average)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Instruction Execution Rate
• We can refine the formulation for processor time T by recognizing that

during the execution of an instruction, part of the work is done by the
processor, and part of the time a word is being transferred to or from
memory

T = Ic * [p + (m * k)] * t where

• p is the number of processor cycles needed to decode and execute the
instruction,

• m is the number of memory references needed, and

• k is the ratio between memory cycle time and processor cycle time.

• The five performance factors in the preceding equation (Ic, p, m, k, t) are
influenced by four system attributes:

– the design of the instruction set (known as instruction set architecture);

– compiler technology (how effective the compiler is in producing an efficient machine language
program from a high-level language program);

– processor implementation;

– and cache and memory hierarchy.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

 Ic p m k t

Instruction set
architecture

X X

Compiler technology X X X

Processor

implementation
 X X

Cache and memory

hierarchy
 X X

Table 2.1 Performance Factors and System Attributes

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

An X in a cell indicates a system attribute that affects a performance factor

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

MIPS and MFLOPS Rate

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

MIPS Rate example

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

The use of benchmarks to
compare systems involves

calculating the mean value of a
set of data points related to

execution time

The three
common

formulas used
for calculating
a mean are:

• Arithmetic

• Geometric

• Harmonic

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

0 2 4 6 8 9 101 3 5 7 11

MD

AM

GM

HM

(a)

MD

AM

GM

HM

(b)

MD

AM

GM

HM

(c)

MD

AM

GM

HM

(d)

MD

AM

GM

HM

(e)

MD

AM

GM

HM

(f)

MD

AM

GM

HM

MD = median

AM = arithmetic mean

GM = geometric mean

HM = harmonic mean

(a) Constant (11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11)

(b) Clustered around a central value (3, 5, 6, 6, 7, 7, 7, 8, 8, 9, 1 1)

(c) Uniform distribution (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1)

(d) Large-number bias (1, 4, 4, 7, 7, 9, 9, 10, 10, 1 1, 11)

(e) Small-number bias(1, 1, 2, 2, 3, 3, 5, 5, 8, 8, 1 1)

(f) Upper outlier (11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

(g) Lower outlier (1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11)

(g)

Figure 2.6 Comparison of Means on Various Data Sets

(each set has a maximum data point value of 11)

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Means

• It is examples like this that have fueled the

“benchmark means wars” in the citations listed

earlier. It is safe to say that no single number can

provide all the information that one needs for

comparing performance across systems.

• One is chosen depending upon application.

• SPEC uses GM

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Arithmetic Mean
◼ An Arithmetic Mean (AM) is an appropriate measure

if the sum of all the measurements is a meaningful

and interesting value

◼ The AM is a good candidate for comparing the execution

time performance of several systems

◼ The AM used for a time-based variable, such as program execution time, has the
important property that it is directly proportional to the total time

◼ If the total time doubles, the mean value doubles

For example, suppose we were interested in using a system

for large-scale simulation studies and wanted to evaluate several

alternative products. On each system we could run the simulation

multiple times with different input values for each run, and then take

the average execution time across all runs. The use of

multiple runs with different inputs should ensure that the results are

not heavily biased by some unusual feature of a given input set. The

AM of all the runs is a good measure of the system’s performance on

simulations, and a good number to use for system comparison.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Benchmarks

• The common need in industry and academic and

research communities for generally accepted computer

performance measurements has led to the development

of standardized benchmark suites.

• A benchmark suite is a collection of programs, defined in

a high-level language, that together attempt to provide a

representative test of a computer in a particular

application or system programming area

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Benchmark Principles

•Desirable characteristics of a benchmark
program:

1. It is written in a high-level language, making it
portable across different machines

2. It is representative of a particular kind of

programming domain or paradigm, such as

systems programming, numerical programming,

or commercial programming

3. It can be measured easily

4. It has wide distribution
© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

System Performance Evaluation

Corporation (SPEC)
– SPEC

– An industry consortium

– Defines and maintains the best known collection of benchmark suites aimed at

evaluating computer systems

– Performance measurements are widely used for comparison and research

purposes

• The best known of the SPEC benchmark suites is SPEC

CPU2006, CPU2017

• Other SPEC suites include the following: SPECviewperf,

SPECwpc, SPECjvm2008, SPECjbb2013, SPECsfs2008,

SPECvirt_sc2013.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

SPEC

CPU2006

Best known SPEC benchmark
suite
Industry standard suite for
processor intensive applications
Appropriate for measuring
performance for applications
that spend most of their time
doing computation rather than
I/O
Consists of 17 floating point
programs written in C, C++, and
Fortran and 12 integer programs
written in C and C++
Suite contains over 3 million
lines of code
Fifth generation of processor
intensive suites from SPEC

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Benchmark Reference

time
(hours)

Instr

count
(billion)

Language Application

Area

Brief Description

400.perlbench 2.71 2,378 C
Programming
Language

PERL programming
language interpreter, applied

to a set of three programs.

401.bzip2 2.68 2,472 C

Compression General-purpose data

compression with most work

done in memory, rather than
doing I/O.

403.gcc 2.24 1,064 C
C Compiler Based on gcc Version 3.2,

generates code for Opteron.

429.mcf 2.53 327 C
Combinatoria

l

Optimization

Vehicle scheduling

algorithm.

445.gobmk 2.91 1,603 C
Artificial

Intelligence

Plays the game of Go, a

simply described but deeply
complex game.

456.hmmer 2.59 3,363 C
Search Gene
Sequence

Protein sequence analysis
using profile hidden Markov

models.

458.sjeng 3.36 2,383 C
Artificial

Intelligence

A highly ranked chess

program that also plays

several chess variants.

462.libquantum 5.76 3,555 C

Physics /

Quantum
Computing

Simulates a quantum

computer, running Shor's
polynomial-time

factorization algorithm.

464.h264ref 6.15 3,731 C
Video

Compression

H.264/AVC (Advanced

Video Coding) Video

compression.

471.omnetpp 1.74 687 C++

Discrete
Event

Simulation

Uses the OMNet++ discrete
event simulator to model a

large Ethernet campus

network.

473.astar 1.95 1,200 C++
Path-finding

Algorithms

Pathfinding library for 2D

maps.

483.xalancbmk 1.92 1,184 C++

XML

Processing

A modified version of

Xalan-C++, which
transforms XML documents

to other document types.

Table 2.5

SPEC

CPU2006

Integer

Benchmarks

(Table can be found on page 69 in the textbook.)
© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Table 2.6

SPEC

CPU2006

Floating-Point

Benchmarks

Benchmark
Reference

time (hours)

Instr count

(billion) Language Application Area Brief Description

410.bwaves 3.78 1,176 Fortran Fluid Dynamics
Computes 3D transonic
transient laminar viscous

flow.

416.gamess 5.44 5,189 Fortran
Quantum
Chemistry

Quantum chemical
computations.

433.milc 2.55 937 C
Physics / Quantum

Chromodynamics

Simulates behavior of

quarks and gluons

434.zeusmp 2.53 1,566 Fortran Physics / CFD
Computational fluid
dynamics simulation of

astrophysical phenomena.

435.gromacs 1.98 1,958 C, Fortran

Biochemistry /

Molecular
Dynamics

Simulate Newtonian

equations of motion for
hundreds to millions of

particles.

436.cactusAD
M

3.32 1,376 C, Fortran
Physics / General
Relativity

Solves the Einstein
evolution equations.

437.leslie3d 2.61 1,273 Fortran Fluid Dynamics Model fuel injection flows.

444.namd 2.23 2,483 C++
Biology /

Molecular

Dynamics

Simulates large

biomolecular systems.

447.dealII 3.18 2,323 C++
Finite Element
Analysis

Program library targeted at
adaptive finite elements and

error estimation.

450.soplex 2.32 703 C++
Linear
Programming,

Optimization

Test cases include railroad
planning and military airlift

models.

453.povray 1.48 940 C++ Image Ray-tracing 3D Image rendering.

454.calculix 2.29 3,04` C, Fortran
Structural
Mechanics

Finite element code for
linear and nonlinear 3D

structural applications.

459.GemsFDT

D
2.95 1,320 Fortran

Computational

Electromagnetics

Solves the Maxwell

equations in 3D.

465.tonto 2.73 2,392 Fortran
Quantum
Chemistry

Quantum chemistry
package, adapted for

crystallographic tasks.

470.lbm 3.82 1,500 C Fluid Dynamics
Simulates incompressible
fluids in 3D.

481.wrf 3.10 1,684 C, Fortran Weather Weather forecasting model

482.sphinx3 5.41 2,472 C Speech recognition
Speech recognition

software.

(Table can be found on page 70

in the textbook.)© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

SPEC CPU2017

• Best known SPEC benchmark suite

• Industry standard suite for processor intensive applications

• Appropriate for measuring performance for applications that

spend most of their time doing computation rather than I/O

• Consists of 20 integer benchmarks and 23 floating-point

benchmarks written in C, C++, and Fortran

• For all of the integer benchmarks and most of the floating-

point benchmarks, there are both rate and speed benchmark

programs

• The suite contains over 11 million lines of code

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

(Table can be found on page 61 in the textbook.)Kloc = line count (including comments/whitespace) for source files used in a build/1000

Rate Speed Language Kloc Application Area

500.perlbench_r 600.perlbench_s C 363 Perl interpreter

502.gcc_r 602.gcc_s C 1304 GNU C compiler

505.mcf_r 605.mcf_s C 3 Route planning

520.omnetpp_r 620.omnetpp_s C++ 134 Discrete event simulation - computer

network

523.xalancbmk_r 623.xalancbmk_s C++ 520 XML to HTML conversion via XSLT

525.x264_r 625.x264_s C 96 Video compression

531.deepsjeng_r 631.deepsjeng_s C++ 10 AI: alpha-beta tree search (chess)

541.leela_r 641.leela_s C++ 21 AI: Monte Carlo tree search (Go)

548.exchange2_r 648.exchange2_s Fortran 1 AI: recursive solution generator

(Sudoku)

557.xz_r 657.xz_s C 33 General data compression

Table 2.5

(A)

SPEC

CPU2017

Benchmarks

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

(Table can be found on page 61 in the textbook.)Kloc = line count (including comments/whitespace) for source files used in a build/1000

Rate Speed Language Kloc Application Area

503.bwaves_r 603.bwaves_s Fortran 1 Explosion modeling

507.cactuBSSN_r 607.cactuBSSN_s C++, C,

Fortran

257 Physics; relativity

508.namd_r C++, C 8 Molecular dynamics

510.parest_r C++ 427 Biomedical imaging; optical

tomography with finite elements

511.povray_r C++ 170 Ray tracing

519.ibm_r 619.ibm_s C 1 Fluid dynamics

521.wrf_r 621.wrf_s Fortran, C 991 Weather forecasting

526.blender_r C++ 1577 3D rendering and animation

527.cam4_r 627.cam4_s Fortran, C 407 Atmosphere modeling

628.pop2_s Fortran, C 338 Wide-scale ocean modeling

(climate level)

538.imagick_r 638.imagick_s C 259 Image manipulation

544.nab_r 644.nab_s C 24 Molecular dynamics

549.fotonik3d_r 649.fotonik3d_s Fortran 14 Computational electromagnetics

554.roms_r 654.roms_s Fortran 210 Regional ocean modeling.

Table 2.5

(B)

SPEC

CPU2017

Benchmarks

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

(Table can be found on page 64 in the textbook.)

Table 2.6

SPEC

CPU 2017

Integer

Benchmarks

for HP

Integrity

Superdome X

(a) Rate Result

(768 copies)

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Benchmark

Base Peak

Seconds Rate Seconds Rate

500.perlbench_r

1141 1070 933 1310

502.gcc_r
1303 835 1276 852

505.mcf_r
1433 866 1378 901

520.omnetpp_r

1664 606 1634 617

523.xalancbmk_r

722 1120 713 1140

525.x264_r
655 2053 661 2030

531.deepsjeng_r

604 1460 597 1470

541.leela_r
892 1410 896 1420

548.exchange2_r

833 2420 770 2610

557.xz_r
870 953 863 961

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

(Table can be found on page 64 in the textbook.)

Benchmark

Base Peak

Seconds Ratio Seconds Ratio

600.perlbench_s

358 4.96 295 6.01

602.gcc_s
546 7.29 535 7.45

605.mcf_s
866 5.45 700 6.75

620.omnetpp_s

276 5.90 247 6.61

623.xalancbmk_s

188 7.52 179 7.91

625.x264_s
283 6.23 271 6.51

631.deepsjeng_s

407 3.52 343 4.18

641.leela_s
469 3.63 439 3.88

648.exchange2_s

329 8.93 299 9.82

657.xz_s
2164 2.86 2119 2.92

Table 2.6

SPEC

CPU 2017

Integer

Benchmarks

for HP

Integrity

Superdome X

(b) Speed

Result

(384 threads)

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Terms Used in SPEC Documentation

• Benchmark

– A program written in a high-level

language that can be compiled and

executed on any computer that

implements the compiler

• System under test

– This is the system to be evaluated

• Reference machine

– This is a system used by SPEC to

establish a baseline performance for all

benchmarks

▪ Each benchmark is run and

measured on this machine to

establish a reference time for that

benchmark

• Base metric

– These are required for all reported

results and have strict guidelines for

compilation

• Peak metric

– This enables users to attempt to

optimize system performance by

optimizing the compiler output

• Speed metric

– This is simply a measurement of the

time it takes to execute a compiled

benchmark

• Used for comparing the ability of a

computer to complete single tasks

• Rate metric

– This is a measurement of how many

tasks a computer can accomplish in a

certain amount of time

• This is called a throughput, capacity,

or rate measure

• Allows the system under test to

execute simultaneous tasks to take

advantage of multiple processors

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Start

Get next
program

Run program
three times

Select
median value

Ratio(prog) =
Tref(prog)/TSUT(prog)

More
programs?

Compute geometric
mean of all ratios

End

Yes No

Figure 2.7 SPEC Evaluation Flowchart

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Table 2.7 Some SPEC CINT2006 Results

(a) Sun Blade 1000

Benchmark
Execution

time

Execution

time

Execution

time

Reference

time
Ratio

400.perlbench 3077 3076 3080 9770 3.18

401.bzip2 3260 3263 3260 9650 2.96

403.gcc 2711 2701 2702 8050 2.98

429.mcf 2356 2331 2301 9120 3.91

445.gobmk 3319 3310 3308 10490 3.17

456.hmmer 2586 2587 2601 9330 3.61

458.sjeng 3452 3449 3449 12100 3.51

462.libquantum 10318 10319 10273 20720 2.01

464.h264ref 5246 5290 5259 22130 4.21

471.omnetpp 2565 2572 2582 6250 2.43

473.astar 2522 2554 2565 7020 2.75

483.xalancbmk 2014 2018 2018 6900 3.42

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

(b) Sun Blade X6250

Benchmark
Execution

time

Execution

time

Execution

time

Reference

time
Ratio Rate

400.perlbench 497 497 497 9770 19.66 78.63

401.bzip2 613 614 613 9650 15.74 62.97

403.gcc 529 529 529 8050 15.22 60.87

429.mcf 472 472 473 9120 19.32 77.29

445.gobmk 637 637 637 10490 16.47 65.87

456.hmmer 446 446 446 9330 20.92 83.68

458.sjeng 631 632 630 12100 19.18 76.70

462.libquantum 614 614 614 20720 33.75 134.98

464.h264ref 830 830 830 22130 26.66 106.65

471.omnetpp 619 620 619 6250 10.10 40.39

473.astar 580 580 580 7020 12.10 48.41

483.xalancbmk 422 422 422 6900 16.35 65.40

 © 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

(Table can be found on page 66 in the textbook.)

Benchmark Seconds Energy (kJ) Average Power

(W)

Maximum

Power (W)

600.perlbench_s

1774 1920 1080 1090

602.gcc_s
3981 4330 1090 1110

605.mcf_s
4721 5150 1090 1120

620.omnetpp_s

1630 1770 1090 1090

623.xalancbmk_s

1417 1540 1090 1090

625.x264_s
1764 1920 1090 1100

631.deepsjeng_s

1432 1560 1090 1130

641.leela_s
1706 1850 1090 1090

648.exchange2_s

2939 3200 1080 1090

657.xz_s
6182 6730 1090 1140

Table 2.7

SPECspeed

2017_int_base

Benchmark

Results for

Reference

Machine (1

thread)

Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Summary

Chapter 2

Designing for performance

Microprocessor speed

Performance balance

Improvements in chip organization and

architecture

Multicore

MICs

GPGPUs

Amdahl’s Law

Little’s Law

Performance

Issues

Basic measures of computer performance

Clock speed

Instruction execution rate

Calculating the mean

Arithmetic mean

Harmonic mean

Geometric mean

Benchmark principles

SPEC benchmarks

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

