
Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Computer Organization and Architecture
Designing for Performance

11th Edition, Global Edition

Chapter 21

Multicore Computers



Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Figure 21.1 Alternative Chip Organizations

Figure 21.1  Alternative Chip Organizations
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The organizational changes in processor 

design have primarily been focused on

exploiting ILP, so that more work is done in 

each clock cycle. These changes include,

in chronological order (Figure 21.1):

* Pipelining: Individual instructions are 

executed through a pipeline of stages so that 

while one instruction is executing in one 

stage of the pipeline, another instruction is 

executing in another stage of the pipeline. 

* Superscalar: Multiple pipelines are 

constructed by replicating execution 

resources. This enables parallel execution of 

instructions in parallel pipelines, so long as 

hazards are avoided. 

• Simultaneous multithreading (SMT): 

Register banks are replicated so that 

multiple threads can share the use of 

pipeline resources. 
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Figure 21.2

Power and Memory Considerations
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To maintain the trend of 

higher performance as the 

number of transistors per 

chip

rises, designers have 

resorted to more elaborate 

processor designs 

(pipelining, superscalar,

SMT) and to high clock 

frequencies. Unfortunately, 

power requirements have

grown exponentially as 

chip density and clock 

frequency have risen. This 

was shown

in Figure 2.2.
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Figure 21.3

Performance Effect of Multiple Cores

Figure 21.3  Performance Effect of Multiple Cores
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The potential performance benefits of a multicore organization 

depend on the ability to effectively exploit the parallel resources 

available to the application. Let us focus first on a single 

application running on a multicore system. 

The law assumes a program in which a fraction (1 – f ) of the 

execution time involves code that is inherently serial and a fraction 

f that involves code that is infinitely parallelizable with no 

scheduling overhead. 

This law appears to make the prospect of a multicore organization 

attractive. But as Figure 21.3a shows, even a small amount of 

serial code has a noticeable impact. If only 10% of the code is 

inherently serial (f = 0.9), running the program on a multi- core 

system with 8 processors yields a performance gain of only a 

factor of 4.7. In addition, software typically incurs overhead as a 

result of communication and distribution of work among multiple 

processors and as a result of cache coherence overhead. This 

results in a curve where performance peaks and then begins to 

degrade because of the increased burden of the overhead of using 

multiple processors (e.g., coordination and OS management). 

Figure 21.3b, from [MCDO05], is a representative example. 
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Figure 21.4 

Scaling of Database Workloads on Multiple-

Processor Hardware

Figure 21.4  Scaling of Database Workloads on Multiple-Processor Hardware

0
0

16

32

48

64

16 32

number of processors

sc
a

li
n

g

48 64

per
fe

ct
 s
ca

lin
g

Oracle DSS 4-way join

TMC data mining
DB2 DSS scan & aggs

Oracle ad hoc insurance OLTP



Copyright © 2022 Pearson Education, Ltd. All Rights Reserved

Effective Applications for Multicore 

Processors

• Multi-threaded native applications

– Thread-level parallelism

– Characterized by having a small number of highly threaded processes

• Multi-process applications

– Process-level parallelism

– Characterized by the presence of many single-threaded processes

• Java applications

– Embrace threading in a fundamental way

– Java Virtual Machine is a multi-threaded process that provides 
scheduling and memory management for Java applications

• Multi-instance applications

– If multiple application instances require some degree of isolation, 
virtualization technology can be used to provide each of them with its 
own separate and secure environment
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Threading Granularity

• The minimal unit of work that can be beneficially parallelized

• The finer the granularity the system enables, the less 

constrained is the programmer in parallelizing a program

• Finer grain threading systems allow parallelization in more 

situations than coarse-grained ones

• The choice of the target granularity of an architecture involves 

an inherent tradeoff

– The finer grain systems are preferable because of the flexibility they 

afford to the programmer

– The finer the threading granularity, the more significant part of the 

execution is taken by the threading system overhead
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Figure 21.5
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Figure 21.5  Hybrid Threading for Rendering Module
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Figure 21.6

Multicore Organization Alternatives

Figure 21.6  Multicore Organization Alternatives
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Figure 21.6 

shows four 

general 

organizations 

for multicore 

systems. 
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Heterogeneous Multicore Organization

Refers to a processor chip 
that includes more than 

one kind of core

The most prominent trend 
is the use of both CPUs and 
graphics processing units 
(GPUs) on the same chip

• This mix however presents issues 
of coordination and correctness

GPUs are characterized by 
the ability to support 
thousands of parallel 

execution trends

Thus, GPUs are well 
matched to applications 

that process large amounts 
of vector and matrix data
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Figure 21.7 

Heterogenous Multicore Chip Elements

Figure 21.7  Heterogeneous Multicore Chip Elements
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CPU GPU

Clock frequency (GHz) 3.8 0.8

Cores 4 384

FLOPS/core 8 2

GFLOPS 121.6 614.4

FLOPS = floating point operations per second.

FLOPS/core = number of parallel floating point operations that can be performed.

Table 21.1  

Operating Parameters of AMD 5100K 

Heterogeneous Multicore Processor 

Table 21.1 illustrates the potential performance benefit of combining CPUs and 

GPUs for scientific applications
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Heterogeneous System Architecture (HSA)

• Key features of the HSA approach include:

– The entire virtual memory space is visible to both CPU and GPU

– The virtual memory system brings in pages to physical main memory as 

needed

– A coherent memory policy ensures that CPU and GPU caches both see 

an up-to-date view of data

– A unified programming interface that enables users to exploit the parallel 

capabilities of the GPUs within programs that rely on CPU execution as 

well

• The overall objective is to allow programmers to write 

applications that exploit the serial power of CPUs and the 

parallel-processing power of GPUs seamlessly with efficient 

coordination at the OS and hardware level
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Figure 21.8
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Figure 21.8  Texas Instruments 66AK2H12 Heterogenous Multicore Chip
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Another common example of a 

heterogeneous multicore chip is a mixture 

of CPUs and digital signal processors 

(DSPs). A DSP provides ultra-fast 

instruction sequences (shift and add; 

multiply and add), which are commonly 

used in math-intensive digital signal 

processing applications. DSPs are used to 

process analog data from sources such as 

sound, weather satellites, and earthquake 

monitors.
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Figure 21.9

big.Little Chip Components

Figure 21.9  Big.Litte Chip Components
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Another recent approach to heterogeneous multicore organization is the use of 

multiple cores that have equivalent ISAs but vary in performance or power 

efficiency. The leading example of this is ARM’s big.Little architecture, which 

we examine in this section.
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Figure 21.10

Cortex A-7
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Figure 21.10  Cortex A-7 and A-15 Pipelines
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The A7 is far simpler and 

less powerful than the A15. 

But its simplicity requires far 

fewer transistors than does 

the A15’s complexity—and 

fewer transistors require less 

energy to operate. The 

differences between the A7 

and A15 cores are seen most 

clearly by examining their 

instruction pipelines, as 

shown in Figure 21.10.
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Figure 21.11

Cortex-A7 and A15 Performance Comparison

Figure 21.11   Cortex-A7 and A15 Performance Comparison
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Cache Coherence

• May be addressed with software-based techniques

– Software burden consumes too many resources in a SoC chip

• When multiple caches exist there is a need for a cache-coherence scheme 
to avoid access to invalid data

• There are two main approaches to hardware implemented cache coherence

– Directory protocols

– Snoopy protocols

• ACE (Advanced Extensible Interface Coherence Extensions)

– Hardware coherence capability developed by ARM

– Can be configured to implement whether directory or snoopy approach

– Has been designed to support a wide range of coherent masters with differing 
capabilities

– Supports coherency between dissimilar processors enabling ARM big.Little
technology

– Supports I/O coherency for un-cached masters, supports masters with differing 
cache line sizes, differing internal cache state models, and masters with write-
back or write-through caches
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Figure 21.12

ARM ACE Cache Line States

Figure 21.12   ARM ACE Cache Line States
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(a) MESIM

Modified Exclusive Shared Invalid

Clean/Dirty Dirty Clean Clean N/A

Unique? Yes Yes No N/A

Can write? Yes Yes No N/A

Can forward? Yes Yes Yes N/A

Comments

Must write

back to share or

replace

Transitions to

M on write

Shared implies

clean, can

forward

Cannot read

(b) MOISI

Modified Owned Exclusive Shared Invalid

Clean/Dirty Dirty Dirty Clean Either N/A

Unique? Yes Yes Yes Yes N/A

Can write? Yes Yes Yes Yes N/A

Can forward? Yes Yes Yes Yes N/A

Comments

Can share

without write

back

Must write

back to

transition

Transitions

to M on write

Shared, can

be dirty or

clean

Cannot read

(Table can be found on page 756 in the textbook.)

Table 21.2

Comparison of States in Snoop Protocols
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Figure 21.13

Intel Core

i7-5960X 

Block Diagram

Figure 21.13  Intel Core i7-5960X Block Diagram
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Intel has introduced a number of multicore 

products in recent years. In this section, we 

look at the Intel Core i7-5960X.

The general structure of the Intel Core i7-

5960X is shown in Figure 21.13. Each core 

has its own dedicated L2 cache and the 

eight cores share a 20-MB L3 cache . One 

mechanism Intel uses to make its caches 

more effective is prefetching, in which the 

hardware examines memory access 

patterns and attempts to fill the caches 

speculatively with data that’s likely to be 

requested soon.
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Figure 21.14

ARM Cortex-A15 MPCore Chip Block 

Diagram

Figure 21.14  ARM Cortex-A15 MPCore Chip Block Diagram
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Interrupts Timer EventsIn this section, we introduce 

the Cortex-A15 MPCore

multicore chip, which is a 

homogeneous multicore 

processor using multiple A15 

cores. The A15 MPCore is a 

high-performance chip 

targeted at applications 

including mobile computing, 

high-end digital home servers, 

and wireless infrastructure.

Generic interrupt controller 

(GIC):  Handles interrupt 

detection and interrupt

prioritization. The GIC 

distributes interrupts to 

individual cores.
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Interrupt Handling

• Masking of interrupts

• Prioritization of the interrupts

• Distribution of the interrupts to the target A15 cores

• Tracking the status of interrupts

• Generation of interrupts by software

Generic interrupt controller (GIC) provides:

• Is memory mapped

• Is a single functional unit that is placed in the system 
alongside A15 cores

• This enables the number of interrupts supported in the 
system to be independent of the A15 core design

• Is accessed by the A15 cores using a private interface 
through the SCU

GIC
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GIC

Designed to satisfy two 
functional requirements:

• Provide a means of routing an 
interrupt request to a single 
CPU or multiple CPUs as 
required

• Provide a means of 
interprocessor communication 
so that a thread on one CPU 
can cause activity by a thread 
on another CPU

Can route an interrupt to 
one or more CPUs in the 
following three ways:

• An interrupt can be directed 
to a specific processor only

• An interrupt can be directed 
to a defined group of 
processors

• An interrupt can be directed 
to all processors
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Interrupts can be:

• Inactive
– One that is nonasserted, or which in a multiprocessing environment has been 

completely processed by that CPU but can still be either Pending or Active in some of 
the CPUs to which it is targeted, and so might not have been cleared at the interrupt 
source

• Pending
– One that has been asserted, and for which processing has not started on that CPU

• Active
– One that has been started on that CPU, but processing is not complete 

– Can be pre-empted when a new interrupt of higher priority interrupts A15 core interrupt 
processing

• Interrupts come from the following sources:
– Interprocessor interrupts (IPIs)

– Private timer and/or watchdog interrupts

– Legacy FIQ lines

– Hardware interrupts
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Figure 21.15

Generic Interrupt Controller Block Diagram
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Cache Coherency

• Snoop Control Unit (SCU) resolves most of the traditional bottlenecks related to access to 

shared data and the scalability limitation introduced by coherence traffic

• L1 cache coherency scheme is based on the MESI protocol

• Direct Data Intervention (DDI)

– Enables copying clean data between L1 caches without accessing external memory

– Reduces read after write from L1 to L2

– Can resolve local L1 miss from remote L1 rather than L2

• Duplicated tag RAMs

– Cache tags implemented as separate block of RAM

– Same length as number of lines in cache

– Duplicates used by SCU to check data availability before sending coherency commands

– Only send to CPUs that must update coherent data cache

• Migratory lines

– Allows moving dirty data between CPUs without writing to L2 and reading back from external 

memory
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Figure 21.16

IBM z13 Drawer Structure
The principal 

building block of the 

z13 is the processor 

node. Two nodes are 

connected together

with an inter-node S-

Bus and housed in a 

drawer that fits into a 

slot of the mainframe 

cabinet. A-Bus 

interfaces connect 

these two nodes with 

nodes in other 

drawers. A z13 

configuration can 

have up to four 

drawers.
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Figure 21.17 

IBM z13 Cache Hierarchy in Single Node

The zEC12 

incorporates a 

four level cache 

structure. We 

look at each level 

in turn (Figure 

21.17).
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Summary

Chapter 21     

• Hardware performance issues

– Increase in parallelism and 

complexity

– Power consumption

• Software performance issues

– Software on multicore

– Valve game software example

• Intel Core i7-5960X

• IBM z13 mainframe

– Organization 

– Cache structure

Multicore 

Computers
• Multicore organization

– Levels of cache

– Simultaneous multithreading

• Heterogeneous multicore 

organization

– Different instruction set 

architectures

– Equivalent instruction set 

architectures

– Cache coherence and the 

MOESI model

• ARM Cortex-A15 MPCore

– Interrupt handling

– Cache coherency

– L2 cache coherency
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