TCP/IP intro

Jim Binkley
http://www.cs.pdx.edu/~jrb
jrb@cs.pdx.edu

Very Brief Internet History

- ◆ 1957 Sputnik/USSR. US creates ARPA
- ◆ 62 Paul Baran, packet-switches (missiles)
- ♦ 69 -ARPA/DOD starts ARPANET
- ◆ 71 15 nodes
- ◆ 73 Ethernet/Bob Metcalfe Harvard Ph.D
- ◆ 79 USENET/UUCP over modems
- ◆ 82/83 Darpa starts using TCP/IP on Arpanet
- ◆ 83 BSD UNIX with TCP/IP, enet

Inet history, cont

- ♦ 84 DNS and 10k hosts
- ◆ 88 6k/of 60k hosts visited by Morris worm
- ◆ 89 IETF and IRTF under IAB
- ◆ 92 1st MBONE audio/video over Inet
- ◆ 93 Hillary is root@whitehouse.gov
- ◆ 93 WWW begins to take over
- ◆ 94 businesses and biz begin to take over
- ◆ 94 gov. decides OSI not best idea...

citations:

- ◆ 95 NSFNET replaced by commercial backbones
- ◆ 93-now Internet does not fail ...
- ◆ 2002 term "switch" no longer refers to circuits ...
- ◆ See Hobbes Internet Timeline: RFC 2235
- http:info.isoc.org/guest/zakon/Internet/History/HIT.html for most of these

Internet Growth - DNS surveys

Date	Hosts	Nets	Domains
1969	4		
1984	1024		
1987	28174		
1989	130000	650	3900
1990	313000	2063	9300
1992	727000	4526	
1993	1313000	7505	21000
7/94	3212000	25210	46000
7/95	6.6 M	?	120000
7/96	12.8M	?	488000
97	20-30M	45/55k	>1m

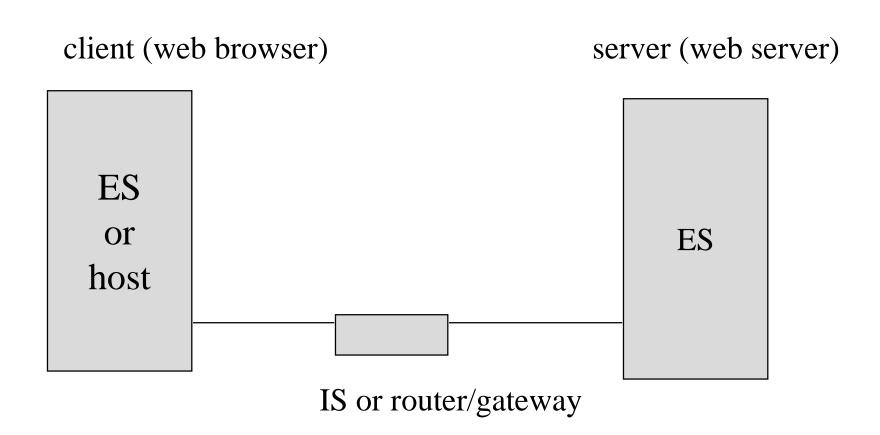
For now (00), see www.mids.org or www.isc.org hosts = 70-90k?, routes=75+, dns???

scalability issues

- ◆ # ip addresses, # ip nets
 - IPv6 may address this
- ♦ # dns names (variation, too many .com)
 - politics as well as engineering
- ◆ # of routes in routers
 - CIDR classless internet domain routing
 - IPv6 doesn't help, process issue, not architecture issue so much

world-wide data net vs telco/voice

- ◆ source: Insight Research Corp, and Boardwatch, August 2000
- world network demand billions of packets
- ◆ 1996 data=135, voice=948
- ◆ 1999 data=1572, voice=1511
- ◆ 2000 data=4451, voice=1766
- ◆ 2002 data=27645, voice=2063

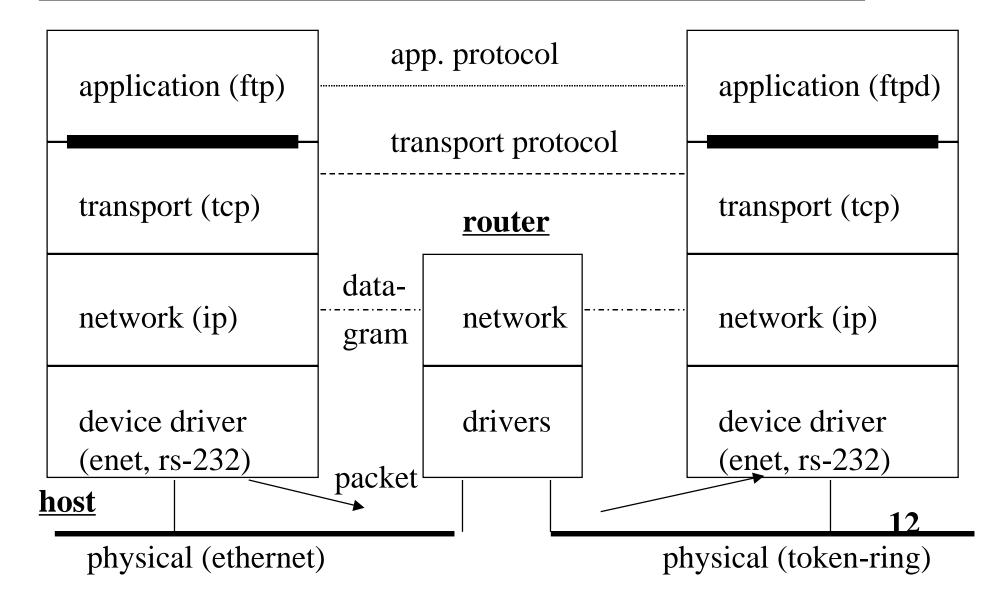

Tcp Intro

- ◆ TCP/IP Internet protocol suite, TCP and IP are *protocols* in the suite, there are more
- ◆ open system, not proprietary, stacks from different vendors **INTEROPERATE**
 - Novell ipx, Apple appletalk closed systems
- ◆ Internet uses TCP/IP protocols
- ◆ amazingly: THERE CAN ONLY BE ONE INTERNET ...

Protocol layers

- protocol layers each layer has its own focus, associated encapsulation and addressing
- ◆ 4 layers in TCP/IP (older)
- ◆ 7 in Open Systems Interconnect (newer)
- ◆ layer is logical idea and may be in fact be ignored in implementation

end systems and intermediate systems



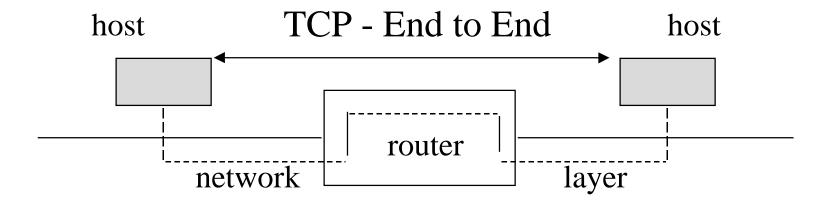
ISO/OSI Reference Model

layer 7	application	app. protocol
layer 6	presentation	
layer 5	session	etc
layer 4	transport	end/end
layer 3	network	routing
layer 2	data link	node addr
layer 1	physical	"wires"

learn the numbers 1..7

TCP Layering

Internet Protocols

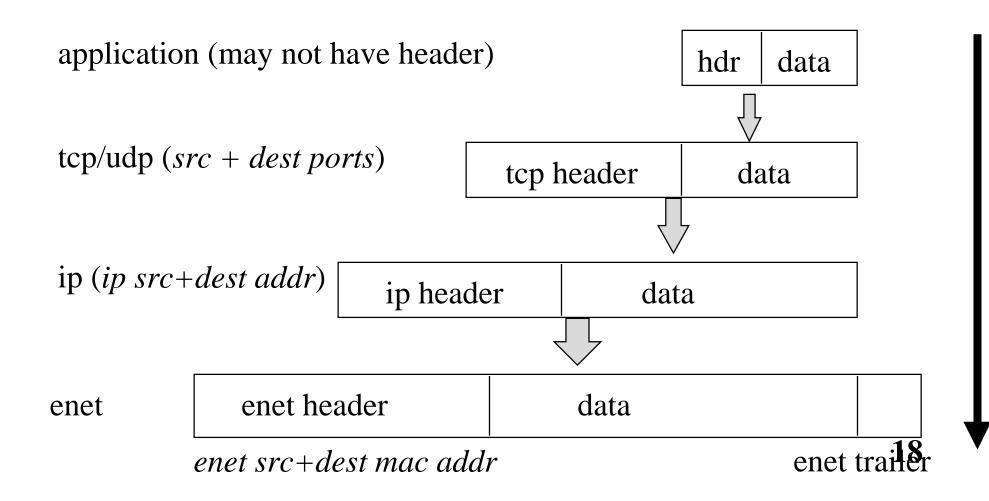

apps	telne ftp/re	l (smtp) t/rlogin cp www)/gopher	dns nfs snmp rip	bootp	ping traceroute ospf
transports	tc	p	udp) 	"raw"/ip
network	ip + icmp + igmp				
device	arp/rarp		slip/ppp/hdlc		
	ethernet II (or 802.3)		phone line, ISDN		

TCP layers/architecture

- ◆ data flows up/down stack
 - each layer on write adds header/addr. info.
 This process is called encapsulation
 - on read, data is **demultiplexed** decide which protocol upstairs to feed it to, and **decapsulated**
- ◆ demux example: from link layer, packet
 - could go to IP, ARP, RARP

transport/network layer

network layer - hides physical layerip is hop by hoptransport layer - end to end, error correctiontcp is end to end


Two Big Ideas

- ◆ peer layers in stack virtually talk to each other -- this is a "protocol"
 - tcp talks to remote endpoint tcp
 - ftp clients talks to ftp server
 - ip src talks to ip dest and may talk to routers too
- network layer hides transport/apps from exact details of physical layer
 - routers glue together networks

addressing/encapsulation

- application -
 - Domain Name System (sirius.cs.pdx.edu)
 - sockets
- ◆ tcp/udp, use *ports*, 16 bit unsigned ints
- ◆ ip uses *IP address*, 32 bit int
 - (net, subnet, host)
- ♦ link layer, ethernet uses IEEE 48 bit MAC address

encapsulation (packet goes out)

IP addresses

- ◆ per interface. each i/f has
 - (ip address, broadcast address, subnet mask)
- ◆ (network, subnet, host)
- ◆ written in dotted decimal in network byte order (big-endian)
 200.12.0.14 (0..255)
- ◆ 5 classes, A to E, each takes a bit at the hiorder end

IP class address table

class	bits	net	host	range	
class A	0	7 bits	24	0.0.0.0	127.255.255.255
class B	10	14	16	128.0	191.255.255.255
class C	110	21	8	192.0	223.255.255.255
class D	1110	28	_	224.0	239.255.255.255
class E	11110	27	_	240.0	247.255.255.255

ip addresses, cont

- ◆ 3 types of IP address (topographical)
 - unicast
 - » 127.0.0.1, 201.3.4.5
 - broadcast
 - » 255.255.255.255, 129.14.255.255,
 - 0.0.0.0
 - multicast
 - » 225.1.2.3

ip address, cont

- uniqueness must be handled by humans
- various IP authorities at this point
- ♦ U.S. authority is ARIN, www.arin.net
- ◆ ISP feeding chain in U.S., ends up at ARIN
- ◆ IP addresses + A.S. numbers (later)
- ◆ DNS from Internic: rs.internic.net, Network Solutions (www.networksolutions.com), ICANN (www.icann.org)
- on unix: try the whois utility, network registry DB
 - % whois pdx.edu
 - % whois -h www.arin.net 129.95

obtaining an IP address

- ♦ you used to get it from the Internic, but now usually from IP/pipe "ISP"
- ♦ we need to worry about making sure that addresses can be hierarchical
 - CIDR blocks, allocated top-down from your "provider" to you
 - if you change providers, you get to renumber

transport/port numbers

- ◆ TCP/UDP unsigned 16-bits shorts
 - -0..64k-1
- ◆ servers are known by "well-known" ports
 - e.g., telnet 23, http 80, ftp 20, mail 25
- ◆ IAssigned Numbers Authority (IANA) assigns them
 - www.iana.org, also see www.icann.org
- on UNIX stored imperfectly in
 - /etc/services
- ◆ UNIX reserves ports 0..1023 for "root"/su-only
- ◆ dynamically viewed with % netstat -a

Domain Name Systems

- primary function map human readable names to IP numbers
 - sirius.cs.pdx.edu -> 131.252.220.13
- ◆ done entirely as application on top of UDP
- ◆ client-server model, with DNS servers in relatively flat hierarchy
- **♦** o.s. deals in ip addresses, not DNS names

client - server paradigm

- ◆ applications (and sometimes o.s.) organized in application architecture paradigm called *client-server*
- usually but not always message oriented
- ◆ client app talks app. protocol to remote server that processes each message
- ◆ servers might be
 - iterative (process message to conclusion) / UDP
 - or concurrent (master/slave) / TCP

client-server, server forms:

♦ iterative:

```
do forever

wait/read client message

process message

write ACK to client
```

♦ concurrent

```
do forever

wait for connection

fork (spawn task)

child does i/o and exits
```

Internet - what is it?

- ◆ elephant and blind men ... many Points of View
- ◆ a suite of many app protocols on top of TCP/UDP/IP open system, etc., etc.
 - packet switched net on top of circuit/telco
- on MANY physical networks, WAN/LAN
- ◆ the World Wide Web (http/TCP)
 - or chat rooms?
- ◆ a computer network that can survive atomic attack?
 - but where network security is an oxymoron?

Internet - what is it?

- ◆ *Internet* the world-wide set of nets combined with TCP/IP
- ◆ *internet* a bunch of nets tied together
- ◆ The Internet is built on TOP of the phone co's net and views the TELCO network as a link layer black box (subnet model as opposed to peer model)

physically?

- ◆ 10+ Network Access Points or NAPs/MAEs
 - where backbones meet
- ◆ N backbones that cross the U.S.
 - UUNET/PSI/GTE(BBN Planet)/Sprint/C&W
 - T3, or faster OC3/OC12 ATM/SONET
- ◆ regionals (being purchased by the above)
- ◆ local (and national) ISPs
 - AOL/teleport/raindrop labs
- ◆ Jane User with her pc/28.8k modem

telco WAN technologies

- ◆ ATM/SONET (maybe) OC3 (155), OC12 (655)...
 - OC48 or faster possible (WDM means virtual pipes)
- ◆ T3 (<45Mbps) STM \$25k/month
- ◆ T1 (1.54Mbps) \$500 \$2k/month
- ◆ frame relay (shared load)
- ◆ ADSL new, cable modem, 256-T1 or so
- ◆ ISDN 64/128k
- ◆ analog modems (POTS) 56k/28.8k/14.4k
- ◆ ETHERNET is starting to make a dent at least in MANs

 31

ISPs - Internet Service Provider

- ◆ provides you with a connection + X services
- services might include:
 - a wire, however big/small
 - ip address space (or an ip network for N lan machines) + DNS name/server, ppp (routing)
 - SMTP email (POP accounts)
 - UNIX login account
 - NNTP Usenix news
 - web pages or ... servers or "e-commerce"

who controls it?

- ◆ Internet is world-wide question of govt. control is very interesting
- ◆ IAB/IETF determine standards
- ♦ but industry may preemptively determine standards (early bird ...)
 - Netscape/Microsoft/Sun/Intel/Cisco

Internet Organization (well...)

- ◆ ISOC Internet Society. professional society to faciliate, support, promote Inet
- ◆ IAB technical oversight and coordination, falls under ISOC
- ♦ IESG Inet Eng. Steering Group oversees:
- ◆ IETF meets 3 times a year, develops, argues over, and standardizes protocols for Inet. 70-80 wgs. Organized in areas, e.g., routing area.
- ◆ IRTF Internet Research Task Force long term research, just a few people compared to IETF

Standards Process

- ◆ standards called RFCs Requests For Comment
- \bullet numbers > 2000 now
- ◆ IETF wg members write "drafts", eventually hopefully may become standards
- ◆ not all protocols have RFCs. not all RFCS are actually used
- ◆ % ftp ftp.isi.edu (cd in-notes) or go to IETF web site

RFCS, continued

- ◆ some important RFCs:rfc 1700 Assigned Numbers RFC
 - (now IANA web site)
 rfc 1500 Official Protocol standards
 rfc 1122, 1123 host and protocol
 requirements numerous
 corrections for basic protocols
- ◆ see rfc index for latest info

TCP/IP free "stack" implementations

- ◆ "stack" == o.s. part, not the apps
- de facto source standard is BSD, now 4.4
 - 4.2 BSD 83 first widely spread tcp/ip
 - 4.3 BSD 86 perf. improvements
 - 4.3 BSD Tahoe 88 slow start, congestion avoidance
 - 4.3 BSD Reno 90 tcp header prediction, slip header compression, new router algorithm
 - 4.4 BSD 93, multicasting
- ♦ others: KA9Q for dos; linux (unix)
- ◆ 4.4 BSD book, Steven's volume 2 (freebsd)
- reference implementations: bsd tcp/ip, apache, bind, mrouted, gated, etc ...