- AI for Medicine I
Syllabus
Lectures
Assignments
Labs
Lectures
Week
Topic(s)
Slide(s)
Additional Resources
Week 01
13.02
Introduction to AI Methods and their Applications in Medicine
Lec 1:
pdf
-
https://www.youtube.com/watch?v=ll5LY7wI_Xc
-
https://www.youtube.com/watch?v=kjgFdfBYY9Q
-
https://www.youtube.com/watch?v=T-4pgL1rNAo
-
https://www.youtube.com/watch?v=iBWixWwn5Dk
Week 02
20.2
-
Data & Data Types
-
Data Preprocessing
-
Example
-
https://www.kaggle.com/code/alirezahasannejad/data-preprocessing-in-machine-learning
Lec 21:
pdf
Lec 22:
pdf
-
https://www.geeksforgeeks.org/ml-introduction-data-machine-learning/
-
https://medium.com/datasciencearth/data-pre-processing-in-machine-learning-with-python-b07cd06866c7
-
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
-
https://github.com/vanya2v/Data-Cleaning-and-Preprocessing-CompFest15/blob/main/1_Data_Cleaning_COMPFEST.ipynb
-
https://github.com/karolinamgoma/Data-cleaning-and-preprocessing/blob/main/Live%20expectancy%20-%20data%20cleaning.ipynb
-
https://ml-course.github.io/master/notebooks/05%20-%20Data%20Preprocessing.html
Week 03
27.2
Supervised Learning
- Basic Concepts
- Decision Trees
- Example
:
https://www.cse.msu.edu/~ptan/dmbook/tutorials/tutorial6/tutorial6.html
Lec 31:
pdf
Lec 32:
pdf
https://github.com/jakevdp/PythonDataScienceHandbook/blob/d66231454ef753818dc9213c9b5942e067266966/notebooks_v1/05.01-What-Is-Machine-Learning.ipynb
https://github.com/jakevdp/PythonDataScienceHandbook/blob/d66231454ef753818dc9213c9b5942e067266966/notebooks_v1/05.08-Random-Forests.ipynb
https://github.com/ageron/handson-ml3/blob/main/06_decision_trees.ipynb
Week 04
06.3
Supervised Learning
- Model Evaluation and Evaluation Metrics
- K-Nearest Neigbor
- KNN Example
-
https://www.kaggle.com/code/prashant111/knn-classifier-tutorial
-
https://www.kaggle.com/code/shrutimechlearn/step-by-step-diabetes-classification
Lec 41:
pdf
Lec 42:
pdf
https://www.geeksforgeeks.org/k-nearest-neighbor-algorithm-in-python/?ref=ml_lbp
https://github.com/jakevdp/PythonDataScienceHandbook/blob/d66231454ef753818dc9213c9b5942e067266966/notebooks_v1/05.05-Naive-Bayes.ipynb
Week 05
13.3
Supervised Learning
- Naive Bayes Classication
- Naive Bayes Example
-
https://www.kaggle.com/code/prashant111/naive-bayes-classifier-in-python
-
https://www.kaggle.com/code/nisasoylu/naive-bayes-implementation-on-cancer-dataset
- Artifical Neural Networks
-
https://www.kaggle.com/code/saumandas/neural-networks-from-scratch-tutorial
-
https://www.geeksforgeeks.org/classification-using-sklearn-multi-layer-perceptron/
Lec 51:
pdf
Lec 52:
pdf
https://chriskhanhtran.github.io/minimal-portfolio/projects/breast-cancer.html
https://python-course.eu/machine-learning/naive-bayes-classifier-with-scikit.php
https://github.com/ageron/handson-ml3/blob/main/10_neural_nets_with_keras.ipynb
https://www.pluralsight.com/resources/blog/guides/machine-learning-neural-networks-scikit-learn
https://python-course.eu/machine-learning/neural-networks-with-scikit.php
Week 06
20.3
Supervised Learning
- S
upport Vector Machines
- Ensemble Methods
- Overfiting
Example for - SVM, Ensemble Learn, Overfitting :
https://www.cse.msu.edu/~ptan/dmbook/tutorials/tutorial6/tutorial6.html
Lec 61
pdf
Lec 62
pdf
Lec 63
pdf
-
https://github.com/jakevdp/PythonDataScienceHandbook/blob/d66231454ef753818dc9213c9b5942e067266966/notebooks_v1/05.07-Support-Vector-Machines.ipynb
-
https://github.com/ageron/handson-ml3/blob/main/07_ensemble_learning_and_random_forests.ipynb
-
https://github.com/jakevdp/PythonDataScienceHandbook/blob/d66231454ef753818dc9213c9b5942e067266966/notebooks_v1/05.03-Hyperparameters-and-Model-Validation.ipynb
Midterm Week
Week 07
17.04
Supervised Learning
- Regression
- Examples
-
https://www.kaggle.com/code/pratimborah/eda-linear-regression-us-medical-expenses
-
https://ujangriswanto08.medium.com/analyzing-health-data-with-logistic-regression-in-python-592dfde2323d
Lec 71
pdf
,
pptx
-
https://colab.research.google.com/drive/1tdJ30c0oBkW8TG6sjJzLL7-PYHCLhpef?usp=sharing
-
https://www.analyticsvidhya.com/blog/2021/06/application-of-machine-learning-in-medical-domain/
-
https://colab.research.google.com/github/akashravichandran/jovian-zerotogan/blob/master/02_insurance_linear_regression.ipynb
-
https://github.com/pptr3/personal-blog/blob/master/article/logistic-regression/jupyter-notebook/LogisticRegression.ipynb
Week 08
24.04
Unsupervised Learning
- Cluster Analysis and Paritional Algorithms
- Examples
-
https://sonraianalytics.com/k-means-clustering-and-data-mining-in-precision-medicine/
-
https://www.kaggle.com/code/datark1/customers-clustering-k-means-dbscan-and-ap
Lec 81
pdf
,
pptx
-
https://jakevdp.github.io/PythonDataScienceHandbook/05.11-k-means.html
-
https://github.com/jakevdp/sklearn_pycon2015/blob/master/notebooks/04.2-Clustering-KMeans.ipynb
-
https://realpython.com/k-means-clustering-python/
-
https://github.com/ali-hazan/jupyter-play-ground/blob/main/Computer%20Vision/Image_segmentation.ipynb
Week 09
01.05
Labor and Solidarity Day
Week 10
08.05
Unsupervised Learning
- Clustering Other Methods
Examples
-
https://www.kaggle.com/code/darkaster/clustering-heart-disease-patient-data
Anomaly Detection
Examples
-
https://www.kaggle.com/code/sagnik1511/eeg-data-analysis-anomaly-searching
-
https://www.kaggle.com/code/yorkyong/exploring-eeg-a-beginner-s-guide
Lec 91
pdf
,
pptx
Lec 92
pdf
,
pptx
-
https://medium.com/analytics-vidhya/identifying-relationships-in-clinical-text-nlp-clustering-929eb04b5942
-
https://actuariesinstitute.github.io/cookbook/docs/DAA_M06_Ex5.html
-
https://www.kaggle.com/code/chandrimad31/clustering-with-pca-kmeans-hierarchical-dbscan
-
https://github.com/gouravaich/density-based-clustering-dbscan/blob/master/DBSCAN%20Notebook.ipynb
-
https://www.kaggle.com/code/praxitelisk/anomaly-detection-techniques-summary/code
-
https://www.kaggle.com/code/drscarlat/medical-claims-anomaly-detection
-
https://github.com/datasciencecampus/anomaly-detection/blob/master/Anomaly_detection.ipynb
-
https://medium.com/data-science/introduction-to-anomaly-detection-in-python-with-pycaret-2fecd7144f87
-
https://www.datature.io/blog/leveraging-datature-nexus-for-tumor-and-anomaly-detection-in-medical-scans
-
https://paperswithcode.com/task/anomaly-detection
-
https://unit8.com/resources/anomaly-detection-in-healthcare-data-with-darts/
-
https://www.datacamp.com/tutorial/introduction-to-anomaly-detection
-
https://www.kaggle.com/code/harshsingh2209/anomaly-detection-with-autoencoders
-
https://www.kaggle.com/discussions/general/128356
-
https://run.unl.pt/bitstream/10362/132860/1/TCDMAA0120.pdf
-
https://www.kaggle.com/code/writetoneeraj/fundamentals-of-medical-image-processing
Liang Book Examples (
html
)
Grades
- Grades (html)