Lectures

Week   Topic(s)                                                     Slide(s)                                 Additional Resources
Week 0I
03.10
Course Information and Introduction


Lec 1: pdf - https://www.youtube.com/watch?v=ll5LY7wI_Xc
- https://www.youtube.com/watch?v=kjgFdfBYY9Q
- https://www.youtube.com/watch?v=T-4pgL1rNAo
- https://www.youtube.com/watch?v=iBWixWwn5Dk
- a href="http://aima.cs.berkeley.edu/"> http://aima.cs.berkeley.edu/
Week II
10.09
Chapter 1 - Introduction to Computers, Programs, and Python [Liang]

Chapter 1 - General Introduction [Think Python : Interactive Edition]
Ch1 : ppt | pdf


Ch 1 : html
Introduction to How Computers Work
- https://www.khanacademy.org/computing/computer-science/how-computers-work2
- https://bjc.edc.org/bjc-r/topic/topic.html?topic=nyc_bjc/6-how-computers-work.topic&course=bjc4nyc.html&novideo&noassignment

Programming Languages
- Languages in GitHub
    - https://madnight.github.io/githut/
- Tiobe Index
   - https://www.tiobe.com/tiobe-index/

- https://www.tutorialspoint.com/python/python_overview.htm
Week II
10.09
Chapter 2 - Elementary Programming

Chapter 2 - Simple Pyhon Data
Ch 2 : ppt | pdf

Ch 2: hhtml
This week lecture will be online on TEAMS (Teams Code: 1ask5mg).

realPython - Operators and Expressions in Python (html/a>)
w3schools- Comments, Variables, Datatypes, Numbers (
html)
learnPython - Variables and Types (html)

Python for Computational Science and Engineering (html)
Python for Computational Science and Engineering - Ch 2 (html)
Jupyter Notebooks for Variables and Expressions  (ipynb)

Week III
17.10
Chapter 3: Mathematical Functions, Strings, and Objects


Chapter 4 - Python Turtle Graphics [Think Python : Interactive Edition]


Chapter 5 - Python Modules [Think Python : Interactive Edition]
Ch 3: ppt | pdf


Ch 4: html


Ch 5: html
w3schools - Strings (html)

Turtle Tutorials:
- Tutorial I (html)
- Tutorial II (html)

-The Beginner's Guide to Python Turtle  (html)

Examples in Ch 3 (html)
Week IV
24.10
Chapter 4 - Selections

Chapter 7 - Selection [Think Python : Interactive Edition]
Ch 4: ppt | pdf

Ch 7: html
w3schools - If ... Else (html)

programiz - Python Flow Control (html)

Python for Computational Science and Engineering - Ch 3 (html)
Python for Computational Science and Engineering - Ch 4 (html)
Python for Computational Science and Engineering - Ch 5 (html)
Python for Computational Science and Engineering - Ch 6 (html)

Examples in Ch 4 (html)
Week V
31.10
Chapter 5 - Loops


Chapter 8 - More About Iteration [Think Python : Interactive Edition]
Ch 5:ppt | pdf


Ch 8: html
w3schools - Python While Loops (html)


programiz - Python For loops  (html)

Week VI
07.11
Chapter 6 - Functions

Chapter 6 - Functions [Think Python : Interactive Edition]
Ch 6: ppt | pdf

Ch 6: html
w3schools - Python Functions (html)

programiz - Python Functions (html)


Week VII
14.11
Chapter 7 - Object-Oriented Programming

Chapter 17 - Classes and Objects - the Basics
Ch 7: ppt | pdf

Ch 17: html
w3schools - Python Classes/Objects (html)

programiz - Python Object Oriented Programming (html)

Week VIII Midterm Week    
Week IX
28.11
Chapter 10 - Lists

Chapter 10 - Lists

Ch 10: ppt | pdf


Ch 10: html
w3schools - Python Lists (html)

programiz - Lists  (html)


Examples in Ch 10 (html)
Week X
05.12
Chapter 11 - Lists for Multi dimensional Data
Chapter 12 - Inheritance and Class Design

Chapter 10 - Nested Lists
Chapter 19 - Inheritance

Ch 11: ppt | pdf
Ch 12: ppt | pdf

Ch 10: html
Ch 19: html
w3schools - Python Inheritance (html)
programiz - Inheritance  (html)
Week XI
12.12
Chapter 13 - Files and Exception Handling

Chapter 11 - Files


Chapter 14 - Tuples, Sets, and Dictionaries
Chapter 12 - Dictionaries
Ch 13: ppt | pdf

Ch 11: html


Ch 14: ppt | pdf
Ch 12: html
w3schools - File Handling (html)
programiz - File I/O (html)
w3schools - Try Except (html)
programiz - Exception Handling (html)

programiz - Tuple (html), Set (html), Dictionary (html)
w2schools - Tuples (html), Sets (html), Dictionaries (html)
Week XII
19.12
- AI, AI Applications, Models, Process
- Python libraries for data manipulation and analysis: Numpy and Pandas
       - NumPy Tutorial (html)
       - Pandas Tutorial (html)
- Data Loading, Storage, and File Formats - Wes McKinney  (html, github)
 AI 1:  pdf

- Tutprialspoint NumPy Tutorial (html)
- Tutorialspoint Pandas ttrorial (html)
- Java T point Pandas Tutorial (html)
- geeksforgeeks Padas Tutorial (html)

- Introduction to NumPy by Jake VanderPlas
- Data Manipulation with Pandas by Jake VanderPas

- How to read most commonly used file formats in Data Science (using Python)? (html)
- Importing Data into Pandas (html)
- Pandas IO tools (text, CSV, HDF5, ...)  (html)

 
Week XIII
26.12
- Exploratory Data Analysis (EDA)
- Examples
    -
Complete Exploratory Data Analysis for Insurance
     (html, local copy, insurance.csv)
    -
Exploratory Data Analysis for the Healthcare
      (html, github Link, local copy, data.csv)
    - Descriptive Statistics
      (github link, local copy,fortune500.csv)
      
AI 2: pdf -https://www.kaggle.com/code/imoore/intro-to-exploratory-data-analysis-eda-in-python
- https://www.geeksforgeeks.org/exploratory-data-analysis-in-python/
- https://www.geeksforgeeks.org/quick-guide-to-exploratory-data-analysis-using-jupyter-notebook/
- https://deepnote.com/app/code-along-tutorials/A-Beginners-Guide-to-Exploratory-Data-Analysis-with-Python-f536530d-7195-4f68-ab5b-5dca4a4c3579
- https://medium.com/analytics-vidhya/introduction-to-exploratory-data-analysis-for-image-text-based-data-1179e194df3f
- https://github.com/henrhoi/image-classification/blob/master/feature_extraction_and_exploratory_data_analysis.ipynb
- https://www.kaggle.com/code/faldoae/exploratory-data-analysis-eda-for-image-datasets
- https://www.kaggle.com/code/ligtfeather/eda-and-cnn-for-image-classification
- 6 Essential Data Visualization Python Libraries - Matplotlib, Seaborn, Bokeh, Altair, Plotly, GGplot (
html)
- Tutorial: Comparing 7 Tools For Data Visualization in Python (html)
- matplolib.prg tutorials (html)
Week XIV
02.01
- Machine Learning & Model Development
- Machine Learning: Classification, Regression and Clustering from Ch15 of Deitel Book (html)
- Examples
 
   - Obesity Level Prediction (html, dataset1)
    - Heart Desease Detection (html, dataset2)
AI 3: pdf - scikit-learn Machine Learning in Python (html)

- Introduction to k-Nearest Neighbors: A powerful Machine Learning Algorithm (with implementation in Python & R) (html)
- K Nearest Neighbors - Classification (html)
- KNN Algorithm - Finding Nearest Neighbors (html)

- Regression Algorithms - Overview (
html)
- Commonly used Machine Learning Algorithms (html)

- K-Means (html)
- The Most Comprehensive Guide to K-Means Clustering  (html)

- Dimensionality Reduction Algorithms: Strengths and Weaknesses (html)
- Choosing the right estimator (html)
Week XV
09.01
- Machine Learning, Model Development and Review
- Machine Learning: Classification, Regression and Clustering from Ch15 of Deitel Book (html)
   
       
       
  ADDITIONAL MATERIAL (NOT COVERED)    
  Chapter 8 - More on Strings and Special Methods Ch 8: ppt | pdf

Ch 9: html
w3schools - Python Strings (html)
programiz - Pyhton Strings (html)

  Chapter 9 - GUI Programming Using Tkinter

Chapter 15 - GUI and Event Driven Programming
Ch 9: ppt | pdf

Ch 9: html
Python GUI Examples (Tkinter Tutorial)  (html)
Python Tkinter (html)
Python - GUI Programming (Tkinter) (html)
Introduction To GUI With Tkinter In Python (html)
Tkinter Tutorial For Beginners (html)
Tkinter tutorial - zetcode (html)
  Chapter 15 - Recursion

Chapter 16 - Recursion
Ch 15: ppt | pdf

Ch 16: html
programiz - Recursion (html)

realpython (html)

Examples in Ch 14,15 (html)
       
Liang Book Examples (html)
Grades
   - Grades (html)