Lectures

Week   Topic(s)                                                     Slide(s)                                 Additional Resources
Week I
10.02
Chapter 16 - Developing Efficient Algorithms [Liang]

Chapter 3 - Analysis - Problem Solving with Algorithms and Data Structures using Python [Interactive Edition]
Ch16 : ppt | pdf

Ch 3 : html
 
Week II
17.02
Chapter 17 - Sorting

Chapter 6 - Searching and Sorting - Problem Solving with Algorithms and Data Structures using Python [Interactive Edition]
Ch17 : ppt | pdf

Ch 3 : html
 
Week III
24.02
IPython, Jupyter Notebooks, Review of Python Data Types and  Structures, and Libraries

IPython: Beyond Normal Python

- Review of Python Data Types and Stuctures (html)
- Python Libraries (html)
  - Jupyter Notebook Tutorial: The Definitive Guide (html)
- A Beginners Tutorial to Jupyter Notebooks(html)
- Jupyter Notebook: An Introduction (html)
- Jupyter Notebook Users Manual (html)
- 28 Jupyter Notebook Tips, Tricks, and Shortcuts (html)

- Getting started with conda (html)

- A gallery of interesting Jupyter Notebooks (html)
Week IV
02.03
Arrray-Oriented Programming with NumPy (html)

Introduction to NumPy

 
- tutprialspoint NumPy Tutorial (html)
- Datacamp Python Numpy Array Tutorial (html)
- The Ultimate Beginners Guide to NumPy (html)
- A Complete Step-By-Step Numpy Tutorial (html)
Week V
09.3
Numpy - continued    
Week VI
16.3
Break for Isolation.
Please, stay at home and limit your movements outside of your homes except for your essential needs.
   
Week VII
23.03

Data Manipulation with Pandas

  - Pandas Pandas Tutorial: A Complete Introduction for Beginners (html)

- EuroScipy 2016 Pandas Tutorial (html)

- w3resource Pandas Tutorial(html)

- Tutorialspoint Pandas turorial (html)

- Java T point Pandas Tutorial (html)

- geeksforgeeks Padas Tutorial (html)
Week VIII
30.3
Pandas - continued    
Week IX
6.4
- Pandas - Continued
- Ch 06 - Data Loading, Storage, and File Formats - Wes McKinney  (html)
- Ch 08 - Strings - A Deeper  Look - Deitel (html)
- Ch 09 - Files and Exceptions (html)

  - The Best Format to Save Pandas Data (html)
- Pandas: How to Read and Write Files (html)
- Loading Data Into A Pandas Dataframe - A Performance Study  (html)
- How to read most commonly used file formats in Data Science (using Python)? (html)
- Importing Data into Pandas (html)
- Pandas IO tools (text, CSV, HDF5, ...)  (html)

- A Guide to the Newer Python String Format Techniques (html)
- Common string operations (html)
Week X
11.4
Midterm Week
Week XI
20.4
Ch 10 - Review of OO Programming,
           - operator overloading,
           - names tuples
           - data classes
           - unit testing - doctest
           - Time Series and Simple Linear Regression (html)
Ch 04 - Visualization with Matplotlib - DS Handbook
   - Introduction 04.00 (html)
 
- Primer on Python Decorators (html)
- Decorators in Python (html)

- 6 Essential Data Visualization Python Libraries - Matplotlib, Seaborn, Bokeh, Altair, Plotly, GGplot (html)
- Tutorial: Comparing 7 Tools For Data Visualization in Python (html)
Week XII
27.04
Ch 12 - Natural Language Processing (NLP) (html) - TextBlob: Simplified Text Processing (html)
- Natural Language Processing for Beginners: Using TextBlob (html)
- Introducing TextBlob (html)

- spaCy (html)
- spaCy 101: Everything you need to know (html)
- spaCy Tutorial to Learn and Master Natural Language Processing (NLP) (html)
- Natural Language Processing With spaCy in Python (html)

- Textatistic (html)
Week XIII
04.05
Ch 15 - Machine Learning: Classification, Regression and Clustering (html)   - scikit-learn Machine Learning in Python (html)

- Introduction to k-Nearest Neighbors: A powerful Machine Learning Algorithm (with implementation in Python & R) (html)
- K Nearest Neighbors - Classification (html)
- KNN Algorithm - Finding Nearest Neighbors (html)

- Model Validation Techniques (html)

- Regression Algorithms - Overview (html)
- Commonly used Machine Learning Algorithms (html)

- K-Means (html)
- The Most Comprehensive Guide to K-Means Clustering Youll Ever Need (html)

- Dimensionality Reduction Algorithms: Strengths and Weaknesses (html)
- Choosing the right estimator (html)
Week XIV
12.05
Chapter 16 - Deep Learning (html) - Deep Learning Tutorial (html)
- A Guide to Deep Learning by YN (html)
-CNN Tutorial (html)
Week XV
19.05
Chapter 17 - Big Data: Big Data: Hadoop, Spark, NoSQL and IoT (html)   - Big Data & Analytics Tutorials (html)
- Big Data Hadoop Tutorial (html)
- NoSQL Databses (html)
- Apache Spark Tutorial (html)
- What is Big Data (html)
 
Grades
   - Grades (html)